Строительный портал - Meerson

Теоретическая механика динамика твердого тела. Общие теоремы динамики системы. Теорема о моменте количества движения

(МЕХАНИЧЕСКИЕ СИСТЕМЫ) – IV вариант

1. Основное уравнение динамики материальной точки, как известно, выражено уравнением . Дифференциальные уравнения движения произвольных точек несвободной механической системы согласно двух способов деления сил можно записать в двух формах:

(1) , где k=1, 2, 3, … , n – количество точек материальной системы.

где - масса k-той точки; - радиус вектор k-той точки, - заданная (активная) сила, действующая на k-тую точку или равнодействующая всех активных сил, действующих на k-тую точку. - равнодействующая сил реакций связей, действующая на k-тую точку; - равнодействующая внутренних сил, действующая на k-тую точку; - равнодействующая внешних сил, действующая на k-тую точку.

При помощи уравнений (1) и (2) можно стремиться решать как первую, так и вторую задачи динамики. Однако решение второй задачи динамики для системы очень усложняется не только с математической точки зрения, но и потому, что мы сталкиваемся с принципиальными трудностями. Они заключаются в том, что как для системы (1), так и для системы (2) число уравнений значительно меньше числа неизвестных.

Так, если использовать (1), то известными для второй (обратной) задачи динамики будут и , а неизвестными будут и . Векторных уравнений будет «n », а неизвестных - «2n».

Если же исходить из системы уравнений (2), то известные и часть внешних сил . Почему часть? Дело в том, что в число внешних сил входят и внешние реакции связей, которые неизвестны. К тому же неизвестными будут ещё и .

Таким образом, как система (1), так и система (2) НЕЗАМКНУТА. Нужно добавлять уравнения, учитывая уравнения связей и возможно ещё нужно накладывать некоторые ограничения на сами связи. Что делать?

Если исходить из (1), то можно пойти по пути составления уравнений Лагранжа первого рода. Но такой путь не рационален потому, что чем проще задача (меньше степеней свободы), тем труднее с точки зрения математики ее решать.

Тогда обратим внимание на систему (2), где - всегда неизвестны. Первый шаг при решении системы – это нужно исключить эти неизвестные. Следует иметь в виду, что нас, как правило, не интересуют внутренние силы при движении системы, то есть при движении системы не нужно знать, как движется каждая точка системы, а достаточно знать как движется система в целом.

Таким образом, если различными способами исключить из системы (2) неизвестные силы , то получаем некоторые соотношения, т. е. появляются некоторые общие характеристики для системы, знание которых позволяют судить о том, как движется система в общем. Эти характеристики вводятся при помощи так называемых общих теорем динамики. Таких теорем четыре:


1. Теорема о движении центра масс механической системы ;

2. Теорема об изменении количества движения механической системы ;

3. Теорема об изменении кинетического момента механической системы ;

4. Теорема об изменении кинетической энергии механической системы .


Динамика:
Динамика материальной системы
§ 35. Теорема о движении центра масс материальной системы

Задачи с решениями

35.1 Определить главный вектор внешних сил, действующих на маховик M, вращающийся вокруг оси AB. Ось AB, укрепленная в круговой раме, в свою очередь вращается вокруг оси DE. Центр масс C маховика находится в точке пересечения осей AB и DE.
РЕШЕНИЕ

35.2 Определить главный вектор внешних сил, приложенных к линейке AB эллипсографа, изображенного на рисунке. Кривошип OC вращается с постоянной угловой скоростью ω; масса линейки AB равна M; OC=AC=BC=l.
РЕШЕНИЕ

35.3 Определить главный вектор внешних сил, действующих на колесо массы M, скатывающееся с наклонной плоскости вниз, если его центр масс C движется по закону xC=at2/2.
РЕШЕНИЕ

35.4 Колесо катится со скольжением по горизонтальной прямой под действием силы F, изображенной на рисунке. Найти закон движения центра масс C колеса, если коэффициент трения скольжения равен f, a F=5fP, где P вес колеса. В начальный момент колесо находилось в покое.
РЕШЕНИЕ

35.5 Колесо катится со скольжением по горизонтальной прямой под действием приложенного к нему вращающего момента. Найти закон движения центра масс C колеса, если коэффициент трения скольжения равен f. В начальный момент колесо находилось в покое.
РЕШЕНИЕ

35.6 Вагон трамвая совершает вертикальные гармонические колебания на рессорах амплитуды 2,5 см и периода T=0,5 c. Масса кузова с нагрузкой 10 т, масса тележки и колес 1 т. Определить силу давления вагона на рельсы.
РЕШЕНИЕ

35.7 Определить силу давления на грунт насоса для откачки воды при его работе вхолостую, если масса неподвижных частей корпуса D и фундамента E равна M1, масса кривошипа OA=a равна M2, масса кулисы B и поршня C равна M3. Кривошип OA, вращающийся равномерно с угловой скоростью ω, считать однородным стержнем.
РЕШЕНИЕ

35.8 Использовав данные предыдущей задачи, считать, что насос установлен на упругом основании, коэффициент упругости которого равен c. Найти закон движения оси O кривошипа OA по вертикали, если в начальный момент ось O находилась в положении статического равновесия и ей была сообщена по вертикали вниз скорость v0. Взять начало отсчета оси x, направленной вертикально вниз, в положении статического равновесия оси O. Силами сопротивления пренебречь.
РЕШЕНИЕ

35.9 Ножницы для резки металла состоят из кривошипно-ползунного механизма OAB, к ползуну B которого прикреплен подвижный нож. Неподвижный нож укреплен на фундаменте C. Определить давление фундамента на грунт, если длина кривошипа r, масса кривошипа M1, длина шатуна l, масса ползуна B с подвижным ножом M2, масса фундамента C и корпуса D равна M3. Массой шатуна пренебречь. Кривошип OA, равномерно вращающийся с угловой скоростью ω, считать однородным стержнем.
РЕШЕНИЕ

35.10 Электрический мотор массы M1 установлен без креплений на гладком горизонтальном фундаменте; на валу мотора под прямым углом закреплен одним концом однородный стержень длины 2l и массы M2, на другой конец стержня насажен точечный груз массы M3; угловая скорость вала равна ω. Определить: 1) горизонтальное движение мотора; 2) наибольшее горизонтальное усилие R, действующее на болты, если ими будет закреплен кожух электромотора на фундаменте.
РЕШЕНИЕ

35.11 По условиям предыдущей задачи вычислить ту угловую скорость ω вала электромотора, при которой электромотор будет подпрыгивать над фундаментом, не будучи к нему прикреплен болтами.
РЕШЕНИЕ

35.12 При сборке электромотора его ротор B был эксцентрично насажен на ось вращения C1 на расстоянии C1C2=a, где C1 центр масс статора A, а C2 центр масс ротора B. Ротор равномерно вращается с угловой скоростью ω. Электромотор установлен посередине упругой балки, статический прогиб которой равен Δ; M1 масса статора, M2 масса ротора. Найти уравнение движения точки C1 по вертикали, если в начальный момент она находилась в покое в положении статического равновесия. Силами сопротивления пренебречь. Начало отсчета оси x взять в положении статического равновесия точки C1.
РЕШЕНИЕ

35.13 Электрический мотор массы M1 установлен на балке, жесткость которой равна c. На вал мотора насажен груз массы M2 на расстоянии l от оси вала. Угловая скорость мотора ω=const. Определить амплитуду вынужденных колебаний мотора и критическое число его оборотов в минуту, пренебрегая массой балки и сопротивлением движению.
РЕШЕНИЕ

35.14 На рисунке изображена крановая тележка A массы M1, которая заторможена посередине балки BD. В центре масс C1 тележки подвешен трос длины l с привязанным к нему грузом C2 массы M2. Трос с грузом совершает гармонические колебания в вертикальной плоскости. Определить: 1) суммарную вертикальную реакцию балки BD, считая ее жесткой; 2) закон движения точки C1 в вертикальном направлении, считая балку упругой с коэффициентом упругости, равным c. В начальный момент балка, будучи недеформированной, находилась в покое в горизонтальном положении. Считая колебания троса малыми, принять: sin φ≈φ, cos φ≈1. Начало отсчета оси y взять в положении статического равновесия точки C1. Массой троса и размерами тележки по сравнению с длиной балки пренебречь.
РЕШЕНИЕ

35.15 Сохранив данные предыдущей задачи и считая балку BD жесткой, определить: 1) суммарную горизонтальную реакцию рельсов; 2) в предположении, что тележка не заторможена, закон движения центра масс C1 тележки A вдоль оси x. В начальный момент точка C1 находилась в покое в начале отсчета оси x. Трос совершает колебания по закону φ=φ0 cos ωt.
РЕШЕНИЕ

35.16 На средней скамейке лодки, находившейся в покое, сидели два человека. Один из них, массы M1=50 кг, переместился вправо на нос лодки. В каком направлении и на какое расстояние должен переместиться второй человек массы M2=70 кг для того, чтобы лодка осталась в покое? Длина лодки 4 м. Сопротивлением воды движению лодки пренебречь.
РЕШЕНИЕ

35.17 На однородную призму A, лежащую на горизонтальной плоскости, положена однородная призма B; поперечные сечения призм прямоугольные треугольники, масса призмы A втрое больше массы призмы B. Предполагая, что призмы и горизонтальная плоскость идеально гладкие, определить длину l, на которую передвинется призма A, когда призма B, спускаясь по A, дойдет до горизонтальной плоскости.
РЕШЕНИЕ

35.18 По горизонтальной товарной платформе длины 6 м и массы 2700 кг, находившейся в начальный момент в покое, двое рабочих перекатывают тяжелую отливку из левого конца платформы в правый. В какую сторону и насколько переместится при этом платформа, если общая масса груза и рабочих равна 1800 кг? Силами сопротивления движению платформы пренебречь.
РЕШЕНИЕ

35.19 Два груза M1 и M2, соответственно массы M1 и M2, соединенные нерастяжимой нитью, переброшенной через блок A, скользят по гладким боковым сторонам прямоугольного клина, опирающегося основанием BC на гладкую горизонтальную плоскость. Найти перемещение клина по горизонтальной плоскости при опускании груза M1 на высоту h=10 см. Масса клина M=4M1=16M2; массой нити и блока пренебречь.
РЕШЕНИЕ

35.20 Три груза массы M1=20 кг, M2=15 кг и M3=10 кг соединены нерастяжимой нитью, переброшенной через неподвижные блоки L и N. При опускании груза M1 вниз груз M2 перемещается по верхнему основанию четырехугольной усеченной пирамиды ABCD массы M=100 кг вправо, а груз M3 поднимается по боковой грани AB вверх. Пренебрегая трением между усеченной пирамидой ABCD и полом, определить перемещение усеченной пирамиды ABCD относительно пола, если груз M1 опустится вниз на 1 м. Массой нити пренебречь.
РЕШЕНИЕ

35.21 Подвижной поворотный кран для ремонта уличной электросети установлен на автомашине массы 1 т. Люлька K крана, укрепленная на стержне L, может поворачиваться вокруг горизонтальной оси O, перпендикулярной плоскости рисунка. В начальный момент кран, занимавший горизонтальное положение, и автомашина находились в покое. Определить перемещение незаторможенной автомашины, если кран повернулся на 60°. Масса однородного стержня L длины 3 м равна 100 кг, а люльки K 200 кг. Центр масс C люльки K отстоит от оси O на расстоянии OC=3,5 м. Сопротивлением движению пренебречь.

Сформулируйте теорему о движении центра масс системы.

Центр масс механической системы движется как материальная точка массой, равной массе всей системы, к которой приложены все силы, действующие на систему.

Какое движение твердого тела можно рассматривать как движение материальной точки, имеющей массу данного тела, и почему?

Поступательное движение твердого тела полностью определяется движением одной из его точек. Следовательно, решив задачу о движении центра масс тела как материальной точки с массой тела, можно определить поступательное движение всего тела.

При каких условиях центр масс системы находится в состоянии покоя и при каких условиях он движется равномерно и прямолинейно?

Если главный вектор внешних сил остается все время равным нулю и начальная скорость центра масс равна нулю, то центр масс находится в покое.

Если главный вектор внешних сил остается все время равным нулю и начальная скорость
, то центр масс движется равномерно и прямолинейно.

При каких условиях центр масс системы не перемещается вдоль некоторой оси?

Если проекция главного вектора внешних сил на какую-либо ось остается все время равной нулю и проекция скорости на эту ось равна нулю, то координата центра масс по этой оси остается постоянной.

Какое действие на свободное твердое тело оказывает приложенная к нему пара сил?

Если приложить пару сил к свободному твердому телу, находящемуся в покое, то под действием этой пары сил тело начнет вращаться вокруг своего центра масс.

Теорема об изменении количества движения.

Как определяется импульс переменной силы за конечный промежуток времени? Что характеризует импульс силы?

Импульс переменной силы за конечный промежуток времени
равен

.

Импульс силы характеризует передачу телу механического движения со стороны действующих на нее тел за данный промежуток времени.

Чему равны проекции импульса постоянной и переменной силы на оси координат?

Проекции импульса переменной силы на оси координат равны

,
,
.

Проекции импульса постоянной силы на оси координат за промежуток времени равны

,
,
.

Чему равен импульс равнодействующей?

Импульс равнодействующей нескольких сил за некоторый промежуток времени равен геометрической сумме импульсов составляющих сил за этот же промежуток времени

.

Как изменяется количество движения точки, движущейся равномерно по окружности?

При равномерном движении точки по окружности изменяется направление количества движения
, но сохраняется его модуль
.

Что называется количеством движения механической системы?

Количеством движения механической системы называется вектор равный геометрической сумме (главному вектору) количеств движений всех точек системы

.

Чему равно количество движения маховика, вращающегося вокруг неподвижной оси, проходящей через его центр тяжести?

Количество движения маховика, вращающегося вокруг неподвижной оси, проходящей через его центр тяжести, равно нулю, т. к.
.

Сформулируйте теоремы об изменении количества движения материальной точки и механической системы в дифференциальной и конечной формах. Выразите каждую из этих теорем векторным уравнением и тремя уравнениями в проекциях на оси координат.

Дифференциал количества движения материальной точки равен элементарному импульсу действующих на точку сил

.

Изменение количества движений точки за некоторый промежуток времени равно геометрической сумме импульсов сил, приложенных к точке за тот же промежуток времени

.

В проекциях эти теоремы имеют вид

,
,

,
,
.

Производная по времени от количества движения механической системы геометрически равна главному вектору внешних сил, действующих на систему

.

Производная по времени от проекции количества движения механической системы на любую ось равна проекции главного вектора внешних сил на ту же ось

,
,
.

Изменение количества движения системы за некоторый промежуток времени равно геометрической сумме импульсов внешних сил, приложенных к системе, за тот же промежуток

.

Изменение проекции количества движения системы на любую ось равно сумме проекций импульсов всех внешних сил, действующих на систему, на ту же ось

,
,
.

При каких условиях количество движения механической системы не изменяется? При каких условиях не изменяется его проекция на некоторую ось?

Если главный вектор внешних сил за рассматриваемый промежуток времени равен нулю, то количество движения системы постоянно.

Если проекция главного вектора внешних сил на какую-либо ось равна нулю, то проекция количества движения на эту ось постоянна.

Почему происходит откат орудия при выстреле?

Откат орудия при выстреле по горизонтальному направлению обусловлен тем, что проекция количества движения на горизонтальную ось не изменяется при отсутствии горизонтальных сил

,
.

Могут ли внутренние силы изменить количество движения системы или количество движения ее части?

Т. к. главный вектор внутренних сил равен нулю, то они не могут изменить количество движения системы.

Использование ОЗМС при решении задач связано с определенными трудностями. Поэтому обычно устанавливают дополнительные соотношения между характеристиками движения и сил, которые более удобны для практического применения. Такими соотношениями являются общие теоремы динамики. Они, являясь следствиями ОЗМС, устанавливают зависимости между быстротой изменения некоторых специально введенных мер движения и характеристиками внешних сил.

Теорема об изменении количества движения. Введем понятие вектора количества движения (Р. Декарт) материальной точки (рис. 3.4):

Я і = т V г (3.9)

Рис. 3.4.

Для системы вводим понятие главного вектора количества движения системы как геометрической суммы:

Q = Y, m " V r

В соответствии с ОЗМС: Хю,-^=я) , или X

R (E) .

С учетом, того /w, = const получим: -Ym,!" = R (E) ,

или в окончательном виде

дО/ді = А (Е (3.11)

т.е. первая производная по времени главного вектора количества движения системы равна главному вектору внешних сил.

Теорема о движении центра масс. Центром масс системы называют геометрическую точку, положение которой зависит от т, и т.е. от распределения масс /г/, в системе и определяется выражением радиуса-вектора центра масс (рис. 3.5):

где г с - радиус-вектор центра масс.

Рис. 3.5.

Назовем = т с массой системы. После умножения выраже-

ния (3.12) на знаменатель и дифференцирования обеих частей полу-

ценного равенства будем иметь: г с т с = ^т.У. = 0, или 0 = т с У с.

Таким образом, главный вектор количества движения системы равен произведению массы системы и скорости центра масс. Используя теорему об изменении количества движения (3.11), получим:

т с дУ с /ді = А (Е) , или

Формула (3.13) выражает теорему о движении центра масс: центр масс системы движется как материальная точка, обладающая массой системы, на которую действует главный вектор внешних сил.

Теорема об изменении момента количества движения. Введем понятие момента количества движения материальной точки как векторное произведение ее радиуса-вектора и количества движения:

к о, = бл х т, У , (3.14)

где к ОІ - момент количества движения материальной точки относительно неподвижной точки О (рис. 3.6).

Теперь определим момент количества движения механической системы как геометрическую сумму:

К() = X ко, = ЩУ, ? О-15>

Продифференцировав (3.15), получим:

Ґ сік --- х т і У. + г ю х т і

Учитывая, что = У Г У і х т і У і = 0, и формулу (3.2), получим:

сіК а /с1ї - ї 0 .

На основании второго выражения в (3.6) окончательно будем иметь теорему об изменении момента количества движения системы:

Первая производная по времени от момента количества движения механической системы относительно неподвижного центра О равна главному моменту внешних сил, действующих на эту систему, относительно того же центра.

При выводе соотношения (3.16) предполагалось, что О - неподвижная точка. Однако можно показать, что и в ряде других случаев вид соотношения (3.16) не изменится, в частности, если при плоском движении моментную точку выбрать в центре масс, мгновенном центре скоростей или ускорений. Кроме этого, если точка О совпадает с движущейся материальной точкой, равенство (3.16), записанное для этой точки обратится в тождество 0 = 0.

Теорема об изменении кинетической энергии. При движении механической системы изменяется как «внешняя», так и внутренняя энергия системы. Если характеристики внутренних сил, главный вектор и главный момент, не сказываются на изменении главного вектора и главного момента количества ускорений, то внутренние силы могут входить в оценки процессов энергетического состояния системы. Поэтому при рассмотрении изменений энергии системы приходится рассматривать движения отдельных точек, к которым приложены также и внутренние силы.

Кинетическую энергию материальной точки определяют как величину

Т^туЦг. (3.17)

Кинетическая энергия механической системы равна сумме кинетических энергий материальных точек системы:

Заметим, что Т > 0.

Определим мощность силы, как скалярное произведение вектора силы на вектор скорости:

Общие теоремы динамики - это теорема о движении центра масс механической системы, теорема об изменении количества движения, теорема об изменении главного момента количества движения (кинетического момента) и теорема об изменении кинетической энергии механической системы.

Теорема о движении центра масс механической системы

Теорема о движении центра масс.
Произведение массы системы на ускорение ее центра масс равно векторной сумме всех действующих на систему внешних сил:
.

Здесь M - масса системы:
;
a C - ускорение центра масс системы:
;
v C - скорость центра масс системы:
;
r C - радиус вектор (координаты) центра масс системы:
;
- координаты (относительно неподвижного центра) и массы точек, из которых состоит система.

Теорема об изменении количества движения (импульса)

Количество движения (импульс) системы равно произведению массы всей системы на скорость ее центра масс или сумме количества движения (сумме импульсов) отдельных точек или частей, составляющих систему:
.

Теорема об изменении количества движения в дифференциальной форме.
Производная по времени от количества движения (импульса) системы равна векторной сумме всех действующих на систему внешних сил:
.

Теорема об изменении количества движения в интегральной форме.
Изменение количества движения (импульса) системы за некоторый промежуток времени равно сумме импульсов внешних сил за тот же промежуток времени:
.

Закон сохранения количества движения (импульса).
Если сумма всех внешних сил, действующих на систему, равна нулю, то вектор количества движения системы будет постоянным. То есть все его проекции на оси координат будут сохранять постоянные значения.

Если сумма проекций внешних сил на какую либо ось равна нулю, то проекция количества движения системы на эту ось будет постоянной.

Теорема об изменении главного момента количества движения (теорема моментов)

Главным моментом количества движения системы относительно данного центра O называется величина , равная векторной сумме моментов количеств движения всех точек системы относительно этого центра:
.
Здесь квадратные скобки обозначают векторное произведение.

Закрепленные системы

Следующая ниже теорема относится к случаю, когда механическая система имеет неподвижную точку или ось, которая закреплена относительно инерциальной системы отсчета. Например тело, закрепленное сферическим подшипником. Или система тел, совершающая движение вокруг неподвижного центра. Это также может быть неподвижная ось, вокруг которой вращается тело или система тел. В этом случае, под моментами следует понимать моменты импульса и сил относительно закрепленной оси.

Теорема об изменении главного момента количества движения (теорема моментов)
Производная по времени от главного момента количества движения системы относительно некоторого неподвижного центра O равна сумме моментов всех внешних сил системы относительно того же центра.

Закон сохранения главного момента количества движения (момента импульса).
Если сумма моментов всех приложенных к системе внешних сил относительно данного неподвижного центра O равна нулю, то главный момент количества движения системы относительно этого центра будет постоянным. То есть все его проекции на оси координат будут сохранять постоянные значения.

Если сумма моментов внешних сил относительно некоторой неподвижной оси равна нулю, то момент количества движения системы относительно этой оси будет постоянным.

Произвольные системы

Следующая далее теорема имеет универсальный характер. Она применима как к закрепленным системам, так и к свободно движущимся. В случае закрепленных систем нужно учитывать реакции связей в закрепленных точках. Она отличается от предыдущей теоремы тем, что вместо закрепленной точки O следует брать центр масс C системы.

Теорема моментов относительно центра масс
Производная по времени от главного момента количества движения системы относительно центра масс C равна сумме моментов всех внешних сил системы относительно того же центра.

Закон сохранения момента импульса.
Если сумма моментов всех приложенных к системе внешних сил относительно центра масс C равна нулю, то главный момент количества движения системы относительно этого центра будет постоянным. То есть все его проекции на оси координат будут сохранять постоянные значения.

Момент инерции тела

Если тело вращается вокруг оси z с угловой скоростью ω z , то его момент количества движения (кинетический момент) относительно оси z определяется по формуле:
L z = J z ω z ,
где J z - момент инерции тела относительно оси z .

Момент инерции тела относительно оси z определяется по формуле:
,
где h k - расстояние от точки массой m k до оси z .
Для тонкого кольца массы M и радиуса R или цилиндра, масса которого распределена по его ободу,
J z = M R 2 .
Для сплошного однородного кольца или цилиндра,
.

Теорема Штейнера-Гюйгенса.
Пусть Cz - ось, проходящая через центр масс тела, Oz - параллельная ей ось. Тогда моменты инерции тела относительно этих осей связаны соотношением:
J Oz = J Cz + M a 2 ,
где M - масса тела; a - расстояние между осями.

В более общем случае :
,
где - тензор инерции тела.
Здесь - вектор, проведенный из центра масс тела в точку с массой m k .

Теорема об изменении кинетической энергии

Пусть тело массы M совершает поступательное и вращательное движение с угловой скоростью ω вокруг некоторой оси z . Тогда кинетическая энергия тела определяется по формуле:
,
где v C - скорость движения центра масс тела;
J Cz - момент инерции тела относительно оси, проходящей через центр масс тела параллельно оси вращения. Направление оси вращения может меняться со временем. Указанная формула дает мгновенное значение кинетической энергии.

Теорема об изменении кинетической энергии системы в дифференциальной форме.
Дифференциал (приращение) кинетической энергии системы при некотором ее перемещении равно сумме дифференциалов работ на этом перемещении всех приложенных к системе внешних и внутренних сил:
.

Теорема об изменении кинетической энергии системы в интегральной форме.
Изменение кинетической энергии системы при некотором ее перемещении равно сумме работ на этом перемещении всех приложенных к системе внешних и внутренних сил:
.

Работа, которую совершает сила , равна скалярному произведению векторов силы и бесконечно малому перемещению точки ее приложения :
,
то есть произведению модулей векторов F и ds на косинус угла между ними.

Работа, которую совершает момент сил , равна скалярному произведению векторов момента и бесконечно малого угла поворота :
.

Принцип Даламбера

Суть принципа Даламбера состоит в том, чтобы задачи динамики свести к задачам статики. Для этого предполагают (или это заранее известно), что тела системы имеют определенные (угловые) ускорения. Далее вводят силы инерции и (или) моменты сил инерции, которые равны по величине и обратные по направлению силам и моментам сил, которые по законам механики создавали бы заданные ускорения или угловые ускорения

Рассмотрим пример. Путь тело совершает поступательное движение и на него действуют внешние силы . Далее мы предполагаем, что эти силы создают ускорение центра масс системы . По теореме о движении центра масс, центр масс тела имел бы такое же ускорение, если бы на тело действовала сила . Далее мы вводим силу инерции:
.
После этого задача динамики:
.
;
.

Для вращательного движения поступают аналогичным образом. Пусть тело вращается вокруг оси z и на него действуют внешние моменты сил M e zk . Мы предполагаем, что эти моменты создают угловое ускорение ε z . Далее мы вводим момент сил инерции M И = - J z ε z . После этого задача динамики:
.
Превращается в задачу статики:
;
.

Принцип возможных перемещений

Принцип возможных перемещений применяется для решений задач статики. В некоторых задачах, он дает более короткое решение, чем составление уравнений равновесия. Особенно это касается систем со связями (например, системы тел, соединенные нитями и блоками), состоящих из множества тел

Принцип возможных перемещений .
Для равновесия механической системы с идеальными связями необходимо и достаточно, чтобы сумма элементарных работ всех действующих на нее активных сил при любом возможном перемещении системы была равна нулю.

Возможное перемещение системы - это малое перемещение, при котором не нарушаются связи, наложенные на систему.

Идеальные связи - это связи, которые не совершают работы при перемещении системы. Точнее, сумма работ, совершаемая самими связями при перемещении системы равна нулю.

Общее уравнение динамики (принцип Даламбера - Лагранжа)

Принцип Даламбера - Лагранжа - это объединение принцип Даламбера с принципом возможных перемещений. То есть, при решении задачи динамики, мы вводим силы инерции и сводим задачу к задаче статики, которую решаем с помощью принципа возможных перемещений.

Принцип Даламбера - Лагранжа .
При движении механической системы с идеальными связями в каждый момент времени сумма элементарных работ всех приложенных активных сил и всех сил инерции на любом возможном перемещении системы равна нулю:
.
Это уравнение называют общим уравнением динамики .

Уравнения Лагранжа

Обобщенные координаты q 1 , q 2 , ..., q n - это совокупность n величин, которые однозначно определяют положение системы.

Число обобщенных координат n совпадает с числом степеней свободы системы.

Обобщенные скорости - это производные от обобщенных координат по времени t .

Обобщенные силы Q 1 , Q 2 , ..., Q n .
Рассмотрим возможное перемещение системы, при котором координата q k получит перемещение δq k . Остальные координаты остаются неизменными. Пусть δA k - это работа, совершаемая внешними силами при таком перемещении. Тогда
δA k = Q k δq k , или
.

Если, при возможном перемещении системы, изменяются все координаты, то работа, совершаемая внешними силами при таком перемещении, имеет вид:
δA = Q 1 δq 1 + Q 2 δq 2 + ... + Q n δq n .
Тогда обобщенные силы являются частными производными от работы по перемещениям:
.

Для потенциальных сил с потенциалом Π ,
.

Уравнения Лагранжа - это уравнения движения механической системы в обобщенных координатах:

Здесь T - кинетическая энергия. Она является функцией от обобщенных координат, скоростей и, возможно, времени. Поэтому ее частная производная также является функцией от обобщенных координат, скоростей и времени. Далее нужно учесть, что координаты и скорости являются функциями от времени. Поэтому для нахождения полной производной по времени нужно применить правило дифференцирования сложной функции:
.

Использованная литература:
С. М. Тарг, Краткий курс теоретической механики, «Высшая школа», 2010.

Понравилась статья? Поделитесь с друзьями!
Была ли эта статья полезной?
Да
Нет
Спасибо, за Ваш отзыв!
Что-то пошло не так и Ваш голос не был учтен.
Спасибо. Ваше сообщение отправлено
Нашли в тексте ошибку?
Выделите её, нажмите Ctrl + Enter и мы всё исправим!