Строительный портал - Meerson

Психофизиологические методы в психологии кратко. Психофизиологические методы. Основные методы психофизиологического исследования

Психофизиология относится к экспериментальным дисциплинам, основными методами которой являются электрофизиологические в силу того, что именно физиологические показатели позволяют проникнуть в суть психических процессов и состояний, как на уровне сознания, так и на бессознательном уровне. Электрофизиологические показатели отражают физико-химические следствия обмена веществ, которые сопровождают основные жизненные процессы. Они являются наиболее точными и надежными показателями течения любых физиологических процессов, дают возможность изучения явления или процесса, не травмируя и не искажая его хода и структуры.

В настоящее время в психофизиологических исследованиях все больше делается акцент на изучение нейронных механизмов психических процессов и состояний. Это связано с тем, что все внешние реакции реализуются посредством нейронной активности.

Среди множества электрофизиологических методов, используемых в психофизиологических исследованиях, центральное место занимают различные способы регистрации электрической активности ЦНС и, в первую очередь, головного мозга, безусловно, доминируют такие как: регистрация импульсной активности нервных клеток, ЭЭГ, регистрация вызванных потенциалов мозга человека и потенциалов, связанных с событиями, различные методы томографии, среди которых, прежде всего, следует выделить позитронно-эмиссионную томографию (ПЭТ) и магнитно-резонансную томографию (МРТ). Остановимся на описании некоторых из них.

Электроэнцефалография является одним из основных методов объективного тестирования функций нервной системы.

ЭЭГ - метод исследования головного мозга, основанный на регистрации его электрических потенциалов. Первая публикация о наличие токов в центральной нервной системы была сделана Du Bois Reymond в 1849 г. В 1875 г., данные о наличии спонтанной и вызванной активности в мозге собаки были получены независимо R.Caton в Англии и В.Я.Данилевским в России. Исследования отечественных нейрофизиологов на протяжении конца XIX и начала XX века внесли существенный вклад в разработку электроэнцефалографии. В.Я.Данилевский не только показал возможность регистрации электрической активности мозга, но и подчеркивал ее тесную связь с нейрофизиологическими процессами. В 1912 г. П.Ю.Кауфман выявил связь электрических потенциалов мозга с “внутренней деятельностью мозга” и их зависимость от изменения метаболизма мозга, воздействия внешних раздражений, наркоза и эпилептического припадка. Подробное описание электрических потенциалов мозга собаки с определением их основных параметров было дано в 1913 и 1925 гг. В.В.Правдич-Неминским.

Австрийский психиатр Ганс Бергер в 1928 г. впервые осуществил регистрацию электрических потенциалов головного мозга у человека, используя скальповые игольчатые электроды. В его же работе были описаны основные ритмы ЭЭГ и их изменения при функциональных пробах и патологических изменениях в мозге. Большое влияние на развитие метода оказали публикации G.Walter (1936) о значении ЭЭГ в диагностике опухолей мозга, а также работы F.Gibbs E.Gibbs W.G.Lennox, давших подробную элктроэнцефалографическую семиотику эпилепсии.


В последующие годы работы исследователей были посвящены не только феноменологии электроэнцефалографии при различных заболеваниях и состояниях мозга, но и изучению механизмов генерации электрической активности. Существенный вклад в эту область внесен работами E.D.Adrian, B.Metthew, G.Walter, H.Jasper, В.С.Русинова, В.Е.Майорчик, Н.П.Бехтеревой, Л.А.Новиковой.

В клинической электроэнцефалографии используют две основные системы отведения ЭЭГ: международную систему «10-20» (Jasper H.), а также модифицированные схемы с уменьшенным количеством электродов (Gibbs F., Gibbs E.; Jung J.).

Точки расположения электродов в системе «10-20» определяют следу­ющим образом. Измеряют расстояние по сагиттальной линии от inion до nasion и принимают его за 100%. В 10% этого расстояния от inion и nasion устанавливают соответственно нижний лобный (Fp) и затылочный (О) са­гиттальные электроды. Остальные сагиттальные электроды (F, Cz и Р) рас­полагают между этими двумя на равных расстояниях, составляющих 20% от расстояния inion-nasion. Вторая основная линия проходит между двумя слу­ховыми проходами через vertex (макушку). Нижние височные электроды (ТЗ, Т4) располагают соответственно в 10% этого расстояния над слуховы­ми проходами, а остальные электроды этой линии (СЗ, Cz, С4) - на рав­ных расстояниях, составляющих 20% длины биаурикулярной линии. Через точки ТЗ, СЗ, С4, Т4 от inion к nasion проводят линии и по ним располага­ют остальные электроды (РЗ, Р4, Т5, Т6, F3, F4, F7, F8, Fpl, Fp2). На мочки ушей помещают электроды, обозначаемые соответственно А1 и А2. Буквенные символы обозначают основные области мозга и ориентиры на голове: О - occipitalis, Р - parietalis, С - centralis, F - frontalis, A - auricularis. Нечётные цифровые индексы соответствуют электродам над ле­вым, а чётные - над правым полушарием мозга (рис.).

Психофизиология - пограничная область психологии, изучающая роль всей совокупности билогических свойств, и прежде всего свойств нервной системы, в детерминации психической деятельности и устойчивых индивидуально-психологических различий.

Огромный вклад в развитие психофизиологии внесли следующие ученые: Мюлер, Вебер, Фехнер, Гельмгольц, Сеченов, Павлов.

Главная задача - причинное объяснение психических явлений путем раскрытия лежащих в их основе нейрофизиологических механизмов.

Психофизиология включает несколько областей исследования.

Психофизиология ощущений и восприятий изучает нервные процессы в анализаторах, начиная с рецепторов и кончая корковыми отделами. Установлены специфические аппараты цветового зрения, специфические рецепторы и проводящие пути тактильной и болевой чувствительности, открыты нейроны, реагирующие на отдельные свойства зрительных и слуховых стимулов.

Психофизиология речи и мышления изучает функциональную роль разных областей мозга и их взаимосвязей в осуществлении речевых процессов. Принципиально важным стало установление тесной связи мыслительных процессов с деятельностью речедвигательного анализатора.

Психофизиология эмоций исследует нейрогуморальные механизмы возниконовения эмоциональных состояний. Открыты нервные "центры" удовольствия и неудовольствия, расположенные в подкорковых областях мозга. Установлено, что важная роль в эмоциональном поведении принадлежит гормонам, выделяемым железами внутренней секреции (гипофизом, корой и мозговым слоем надпочечников и др.), а также различными биологически активными веществами.

Психофизиология внимания исследует нейрофизиологические корреляты внимания (изменение ЭЭГ и вызванных потенциалов, изменение кожно-гальванической и др. реакций). Психофизиология внимания тесно связана с проблемами изучения ориентировочного рефлекса и второй сигнальной системы.

Психофизиология произвольных действий вскрывает физиологическую структуру и механизмы их осуществления.

Дифференциальная психофизиология изучает зависимость индивидуальных особенностей психики и поведения от индивидуальных различий в деятельности мозга. В развитии дифференциальной психофизиологии В.М.Русалов выделяет 4 этапа: допавловский, павловский (с 1927 г.), тепловско-небылицинский (с 1956 г.) и современный (с 1972 г.). Последний связан прежде всего с развитием системных представлений в психофизиологии.

Электрофизиологические методы изучения органических функций, основываются на регистрации биопотенциалов, возникающих в тканях живого организма спонтанно или в ответ на внешнее раздражение. Чаще всего используется регистрация биотоков мозга.

Отражение психофизиологических процессов в динамике ЭЭГ . Частотно-амплитудные изменения электрической активности в связи с:

1) активацией внимания - блокада?-ритма, возрастание?-ритма, изменение уровня ассиметрии фаз колебания, концентрация внимания, глубокая депрессия биопотенциалов.

2)Эмоциональным состоянием - нет единой точки зрения; тревога слабая - усиление 2 ритма, усиление тревоги - десинхронизация основного ритма ЭЭГ, отрицательные эмоции - усиление теста активности, положительные эмоции - ослабление теста активности.

"Волна ожидания" . Изменение психофизиологического состояния отражается на электрофизиологических показателях; высокая эмоциональная напряженность - повышение амплитуды волны; неустойчивое внимание - снижение амплитуды волны.

Исследование медленных электрических процессов мозга (МЭП) . При бурных эмоциях - резкое изменение.

Изучение динамики наличного кислорода (коры и глубоких структур мозга), т.е. переменное давление в структурах мозга.

КГР (кожно-гальваническая реакция) . Относится к показателям изменения внимания и эмоций. Феномен Краснова - эффект изменения разности потенциалов сопротивления кожи в связи с ориентировочной реакцией и эмоциями.

Методы исследования в психофизиологии профессиональной деятельности

Психофизиология – экспериментальная наука, поэтому важное значение имеет применение адекватных методов исследования. К основным методам психофизиологического исследования относят следующие.

Модели психической деятельности человека носили бы чисто умозрительный характер, если бы психологи не заинтересовались нейрофизиологическими процессами, лежащими в основе исследуемой ими реальности. Физиологические показатели, в силу своей объективности, являются надежными элементами, используемыми при описании изучаемого поведения и позволяют экспериментаторам включить в сферу своих исследований скрытые для прямого наблюдения проявления активности организма, лежащие в основе поведения.

Основными методами регистрации физиологических процессов в психофизиологии являются электрофизиологические методы, так как в физиологической активности клеток, тканей и органов особое место занимает электрическая составляющая. Электрические потенциалы отражают физико-химические следствия обмена веществ, сопровождающие все основные жизненные процессы, и поэтому являются исключительно надежными, универсальными и точными показателями течения любых физиологических процессов.


Рисунок 4. - Основные методы психофизиологического исследования.

К перечисленным преимуществам электрических показателей физиологической активности следует добавить и неоспоримые технические удобства их регистрации: помимо специальных электродов, для этого достаточно универсального усилителя биопотенциалов, который связан с компьютером, имеющим соответствующее программное обеспечение. И ещё один немаловажный момент, большую часть этих показателей можно регистрировать, никак не вмешиваясь в изучаемые процессы и не травмируя объект исследования. К наиболее широко используемым методам относятся регистрация импульсной активности нервных клеток, регистрация электрической активности кожи, электроэнцефалография, электроокулография, электромиография и электрокардиография. В последнее время в психофизиологию внедряется новый метод регистрации электрической активности мозга – магнитоэнцефалография и изотопный метод (позитронно-эмиссионная томография).

Электроэнцефалография - в традиционной психофизиологии широко используется метод регистрации биоэлектрической активности мозга – электроэнцефалография (ЭЭГ). Спонтанная электрическая активность мозга одновременно может быть записана от многих участков черепа и характеризуется специфическими ритмами определённой частоты и амплитуды. ЭЭГ отражает колебания во времени разности потенциалов между двумя электродами. Выделяют следующие основные биологические ритмы мозга. В покое при отсутствии внешних раздражителей у человека преобладает Альфа-ритм с частотой 8-13 Гц и амплитудой 50 мкВ, он регистрируется преимущественно в затылочной и теменной областях. В условиях деятельности альфа-ритм сменяется Бета-ритмом, который имеет частоту 18-30 Гц и амплитуду колебаний около 25 мкВ. Его локализация – в прецентральной и фронтальной коре. При засыпании в ЭЭГ появляются Тета-волны , имеющие частоту 4-7 Гц и чаще наблюдающиеся во фронтальных зонах, а также Дельта-волны , возникающие в диапазоне 0,5-4 Гц с амплитудой в пределах 100-300мкВ, зона их появления варьирует. Кроме указанных основных ритмов в электроэнцефалограмме выделяют также гамма-колебания, каппа-колебания, лямбда-колебания и сонные веретёна , отличающиеся своей частотой колебаний, амплитудой и локализацией. Кроме того, выделяют эквиваленты альфа-ритма, которые имеют ту же частоту колебаний, что и альфа-ритм, но другую локализацию и чувствительны к другим видам модальности, к ним относится мю-ритм и регистрируемый в височной коре тау-ритм . Рисунок электроэнцефалограммы меняется с переходом ко сну и с изменением функционального состояния в процессе деятельности.



Магнитоэнцефалография (МЭГ) – метод регистрации и анализа параметров магнитных полей организма человека и животных. Магнитные поля создаются слабыми электрическими токами как результатом активности нервных клеток. Данный метод дополняет информацию об особенностях функционирования мозга, получаемую с помощью ЭЭГ. Оба метода позволяют наблюдать события, происходящие в диапазоне сотен миллисекунд. В то же время МЭГ имеет более точное пространственное разрешение, так как магнитная активность нейронов не зависит от электропроводящих свойств окружающих тканей и регистрируется не искаженной.

Электроокулография (ЭОГ) – метод регистрации и анализа движений глаз, основанный на измерении разности потенциалов роговицы и сетчатки глаза. Используемый в комплексе с регистрацией ЭЭГ, метод позволяет выделить в картине биоэлектрической активности мозга артефакты (искажения), вносимые движениями глаз. Регистрация электроокулограммы находит широкое применение в эргономике; этот показатель используется для контроля состояния водителей, долго находящихся за рулем автомашины или локомотива.

Электромиография (ЭМГ) – метод регистрации и анализа суммарных колебаний электрической активности, возникающих в области нервно-мышечных окончаний и мышечных волокнах при поступлении к ним импульсов от мотонейронов спинного и головного мозга. Метод позволяет регистрировать изменения в тонусе мышц в ситуациях, не сопровождающихся внешне наблюдаемыми движениями. МЭГ наиболее информативна в комплексе с другими методами психофизиологического исследования.

Позитронно-эмиссионная томография (ПЭТ) – метод исследования, в котором используются ультракороткоживущие позитронизлучающие изотопы – «красители», входящие в состав естественных метаболитов мозга, которые вводятся в организм внутривенно или через дыхательные пути. Накапливаясь в активных участках мозга, они дают возможность построить «картину» мозга на основе данных о метаболической активности его структур. ПЭТ представляет возможность наблюдать мозг объемно при выполнении экспериментальных задач за счет регистрации пространственного распределения и концентрации активных веществ, участвующих в обменных процессах.

Контрольный раздел

Контрольные вопросы:

1. Какой вклад вносят психология и физиология в изучение проблем трудовой деятельности человека.

2. Каковы возможности использования современных электрофизиологических методов в прогнозировании поведения человека в разных ситуациях.

Тесты для самоконтроля

1. Психофизиология это:

1) наука, изучающая физиологические основы познавательных процессов, эмоционально-потребностной сферы человека и функциональных состояний;

2) отрасль психологической науки, сложившаяся на стыке психологии, медицины и физиологии, направленная на изучение мозговой организации психической деятельности как в патологии, так и в норме;

3) наука, возникшая на стыке психологии и физиологии, предметом изучения которой являются физиологические основы психической деятельности и поведения человека;

4) отрасль психологической науки, изучающая физиологические механизмы психической деятельности от низших до высших уровней ее организации.

2. В начале ХХ века психология труда в Европе была известна под названием:


1) психотехника; 3) тейлоризм;

2) индустриальная психология; 4) психофизиология трудовой деятельности.

3. Кто является основателем психотехники?


1) И.П. Павлов 2) В. Вундт 3) Г. Мюнстенберг 4) В. Штерн.


4. Кто из отечественных ученых начала ХХ в. изучал проблемы психологических состоянии в труде, личности и мотивации?


1) И.М. Сеченов 2) В.М. Бехтерев 3) О. Липман 4) И.П. Павлов.


5. Какой из перечисленных психофизиологических методов не относится к методам исследования мозга?

1) электроэнцефалографическое исследование;

2) топографическое картирование электрической активности;

3) плетизмография;

4) магнитоэнцефалография.

6. Какие методы являются основными методами регистрации физиологических процессов в психофизиологии?


1) электрофизиологические;

2) умозрительные;

3) статистические;

4) химические.


7. Какой из перечисленных психофизиологических методов относится к методам исследования мозга?


1) электроэнцефалография;

2) пупилометрия;

3) плетизмография;

4) электроокулограмма.


8 Какой из ритмов мозга можно наблюдать у человека в состоянии покоя при отсутствии внешних раздражителей?


1) альфа-ритм; 2) бета-ритм; 3) дельта-ритм; 4) тета-ритм.


9. Метод регистрации и анализа движений глаз, основанный на измерении разности потенциалов роговицы и сетчатки глаза называется……………………..

10. Метод регистрации и анализа суммарных колебаний электрической активности, возникающих в области нервно-мышечных окончаний и мышечных волокнах при поступлении к ним импульсов от мотонейронов спинного и головного мозга называется…………………

Методы психофизиологических исследований - комплекс методов, используемых для изучения физиологического обеспечения психических процессов. Одним из первых методов оценки роли разных структур мозга в организации поведения явились методы повреждения или удаления участков мозга с помощью хирургических, химических и температурных воздействий и методы электрической стимуляции определенных отделов мозга. В экспериментальных исследованиях в настоящее время широко используется метод регистрации электрической активности отдельных нейронов или мозговых структур. В современной психофизиологии для изучения физиологического обеспечения психических процессов используются прямые методы изучения нейрофизиологических основ психической деятельности и непрямые - изучения функционального состояния организма в процессе реализации психической деятельности. К прямым методам относятся:

1)Регистрация электроэнфалограммы (ЭЭГ) (метод электроэнцефалографии).

метод регистрации электроэнцефалограммы (ЭЭГ) - суммарной электрической активности, отводимой с поверхности головы. М. э. рассматривается как наиболее распространенный и адекватный для изучения нейрофизиологических основ психической деятельности. Многоканальная запись ЭЭГ позволяет одновременно регистрировать электрическую активность многих функционально различных областей коры. ЭЭГ отводится с помощью специальных электродов (чаще серебряных), которые фиксируются на поверхности черепа шлемом или крепятся клеящей пастой.

2) Регистрация вызванных потенциалы (ВП) (метод вызванных потенциалов).

регистрация суммарной электрической активности, возникающей в ответ на внешние воздействия, - вызванные потенциалы (ВП) - отражает изменения функциональной активности областей коры, осуществляющих прием и обработку поступающей информации. Вызванный потенциал представляет собой последовательность разных по полярности - позитивных и негативных компонентов, возникающих после предъявления стимула. Количественными характеристиками ВП являются латентный период (время от начала стимула до максимума каждого компонента) и амплитуда компонентов. Метод регистрации ВП широко используется при анализе процесса восприятия.



3) Топографическое картирование (brain mapping) ( метод топографического картирования).

метод изображения данных компьютерной обработки ЭЭГ, позволяющий представить пространственное распределение по коре больших полушарий ритмических компонентов ЭЭГ и вызванных потенциалов. Многоканальная регистрация ЭЭГ дает возможность представить полученные в результате компьютерной обработки ЭЭГ данные в удобном для восприятии в наглядном виде - как одномоментное пространственное распределение по коре мощности разных ритмов, степени их синхронности (когерентности), амплитуд компонентов ВП.

4) Позитронно-эмиссионная томография ().

регистрация метаболических процессов в различных областях мозга, позволяющих судить об активности этих областей в процессе деятельности. Компьютерная томография основана на использовании новейших технических методов и вычислительной техники, позволяющих получить множество изображений одной и той же структуры и ее объемное изображение.

Из методов компьютерной томографии наиболее часто используется метод позитронно-эмиссионной томографии (ПЭТ). Этот метод позволяет охарактеризовать активность различных структур мозга на основе изменения метаболических процессов. При обменных процессах нервные клетки используют определенные химические элементы, которые можно пометить радиоизотопами. Усиление активности сопровождается усилением обменных процессов, и в областях повышенной активности образуются скопление изотопов, по которым судят об участии тех или иных структур в психических процессах.

5) Ядерно-магнитный резонансный метод (Метод компьютерной томографии ). См. 4

Методы непрямой регистрации неспецифических изменений функционального состояния центральной нервной системы:

1) Кожно-гальваническая реакция (КГР) (Метод кожно-гальванической реакции ).

регистрация электрокожного потенциала (как правило, на ладони). Электрическая активность кожи связана главным образом с активностью потовых желез, изменяющих ее сопротивление и находящихся под контролем вегетативной нервной системы. Изменение активности неспецифической системы мозга, морфологическим субстратом которой является ретикулярная формация, вызывает существенные изменения электрокожного потенциала. КГР чрезвычайно чувствительна к эмоциональному реагированию, состоянию тревоги, напряженности и часто используется для характеристики функционального состояния человека.

2) Плетизмография. (Методы оценки функционального состояния сердечно-сосудистой системы). комплекс методов изучения физиологического обеспечения психических процессов по показателям деятельности ССС.

Изменения функциональной активности структур мозга требуют адекватного метаболического обеспечения и прежде всего усиленного снабжения кислородом, что достигается интенсификацией кровоснабжения. Это определяет использование различных показателей деятельности сердечно-сосудистой системы.

Признаками, отражающими напряженную работу сердца и усиление выброса крови, являются изменение минутного объема крови (количество крови, проталкиваемой через сердце за 1 мин) и частота сердечных сокращений (ЧСС). ЧСС, которая может быть зафиксирована как простым наблюдением за пульсом, так и при регистрации электрокардиограммы, наиболее часто используется как показатель функционального состояния ЦНС. Широко используется введенный Р.М. Баевским расчетный показатель - индекс напряжения (ИН), учитывающий как ЧСС, так и ее стабильность. ИН прямо пропорционален ЧСС и обратно пропорционален вариации интервалов между двумя сокращениями сердца. Его увеличение свидетельствует о напряжении функционирования сердечно-сосудистой системы.

3) Клиренсные методы (Методы оценки функционального состояния сердечно-сосудистой системы).см 2

Раздел 1. Методы психофизиологических исследований

Каковы основные методы регистрации физиологических процессов в психофизиологии? В чем преимущества электрических показателей физиологической активности? Каковы основные методы психофизиологических исследований?

Методы психофизиологических исследований - комплекс методов, используемых для изучения физиологического обеспечения психических процессов.

В психофизиологии основными методами регистрации физиологических процессов являются электрофизиологические методы. В физиологической активности клеток, тканей и органов особое место занимает электрическая составляющая. Электрические потенциалы отражают физико-химические следствия обмена веществ, сопровождающие все основные жизненные процессы, и поэтому являются исключительно надежными, универсальными и точными показателями течения любых физиологических процессов. Электрические показатели, по сравнению с другими, наиболее демонстративны, таким образом, они являются важным средством обнаружения деятельности. Единообразие потенциалов действия в нервной клетке, нервном волокне, мышечной клетке, как у человека, так и у животных говорит об универсальности этих показателей. Точность электрических показателей, т.е. их временное и динамическое соответствие физиологическим процессам, основана на быстрых физико-химических механизмах генерации потенциалов, являющихся неотъемлемым компонентом физиологических процессов в нервной или мышечной структуре.

К перечисленным преимуществам электрических показателей физиологической активности следует добавить и неоспоримые технические удобства их регистрации: помимо специальных электродов, для этого достаточно универсального усилителя биопотенциалов, который скоммутирован с компьютером, имеющим соответствующее программное обеспечение. И, что важно для психофизиологии, большую часть этих показателей можно регистрировать, никак не вмешиваясь в изучаемые процессы и не травмируя объект исследования. К наиболее широко используемым методам относятся регистрация импульсной активности нервных клеток, регистрация электрической активности кожи, электроэнцефалография, электроокулография, электромиография и электрокардиография. В последнее время в психофизиологию внедряется новый метод регистрации электрической активности мозга - магнитоэнцефалография и изотопный метод (позитронноэмиссионная номография).

Основные методы психофизиологических исследований:

    регистрация импульсной активности нервных клеток;

    электроэнцефалография (ЭЭГ);

    магнитоэнцефалография (МЭГ);

    позитронно-эмиссионная томография мозга (ПЭТ);

    окулография;

    электромиография;

    электрическая активность кожи (ЭАК).

1.1. Регистрация импульсной активности нервных клеток

Изучение активности нервных клеток, или нейронов, как целостных морфологических и функциональных единиц нервной системы, безусловно, остается базовым направлением в психофизиологии. Одним из показателей активности нейронов являются потенциалы действия - электрические импульсы. Современные технические возможности позволяют регистрировать импульсную активность нейронов у животных в свободном поведении и, таким образом, сопоставлять эту активность с различными поведенческими показателями. В редких случаях в условиях нейрохирургических операций исследователям удается зарегистрировать импульсную активность нейронов у человека.

Поскольку нейроны имеют небольшие размеры (несколько десятков микрон), то и регистрация их активности осуществляется с помощью подводимых вплотную к ним специальных отводящих микроэлектродов. Свое название они получили потому, что диаметр их регистрирующей поверхности составляет около одного микрона. Микроэлектроды бывают металлическими и стеклянными. Металлический микроэлектрод представляет собой стержень из специальной высокоомной изолированной проволоки со специальным способом заточенным регистрирующим кончиком. Стеклянный микроэлектрод - пирексовая тонкая трубочка (диаметр около 1 мм) с тонким незапаянным кончиком, заполненная раствором электролита. Электрод фиксируется в специальном микроманипуляторе, укрепленном на черепе исследуемого, и коммутируется с усилителем. С помощью микроманипулятора электрод через отверствие в черепе пошагово вводят в мозг. Длина шага составляет несколько микрон, что позволяет подвести регистрирующий кончик электрода очень близко к нейрону, не повреждая его. Подведение электрода к нейрону осуществляется либо вручную, и в этом случае животное должно находиться в состоянии покоя, либо автоматически на любом этапе поведения животного. Усиленный сигнал поступает на монитор и записывается на магнитную ленту или в память компьютера. При «подходе» кончика электрода к активному нейрону экспериментатор видит на мониторе появление импульсов, амплитуда которых при дальнейшем осторожном продвижении электрода постепенно увеличивается. Когда амплитуда импульсов начинает значительно превосходить фоновую активность мозга, электрод больше не подводят, чтобы исключить возможность повреждения мембраны нейрона.

1.2. Электроэнцефалография (ЭЭГ)

Среди методов электрофизиологического исследования ЦНС человека наибольшее распространение получила регистрация колебаний электрических потенциалов мозга с поверхности черепа - электроэнцефалограмма. Предполагается, что электроэнцефалограмма (ЭЭГ) в каждый момент времени отражает суммарную электрическую активность клеток мозга.

ЭЭГ регистрируют с помощью наложенных на кожную поверхность головы (скальп) отводящих электродов, скоммутированных в единую цепь со специальной усилительной техникой. Увеличенные по амплитуде сигналы с выхода усилителей можно записать на магнитную ленту или в память компьютера для последующей статистической обработки. Для минимизации контактного сопротивления между электродом и скальпом на месте наложения электрода тщательно раздвигают волосы, кожу обезжиривают раствором спирта и между электродом и кожей кладут специальную электропроводную пасту. Для исключения электрохимических процессов на границе электрод - электролит (паста), приводящих к собственным электрическим потенциалам, поверхность электродов покрывают электропроводными неполяризующимися составами, например, хлорированным серебром.

Как любые электрические потенциалы, ЭЭГ всегда измеряется между двумя точками. Существуют два способа регистрации ЭЭГ - биполярный и монополярный. При биполярном отведении регистрируется разность потенциалов между двумя активными электродами. Этот метод применяется в клинике для локализации патологического очага в мозге, но он не позволяет определить, какие колебания возникают под каждым из двух электродов и каковы их амплитудные характеристики. В психофизиологии общепринятым считается метод монополярного отведения. При монополярном методе отведения регистрируется разность потенциалов между различными точками на поверхности головы по отношению к какой-то одной индифферентной точке. В качестве индифферентной точки берут такой участок на голове или лице, на котором какие-либо электрические процессы минимальны и их можно принять за нуль: обычно это - мочка уха или сосцевидный отросток черепа. В этом случае с электрода, наложенного на скальп, регистрируются изменения потенциала с определенного участка мозга.

Отводящие электроды можно накладывать на самые разные участки поверхности головы с учетом проекции на них тех или иных областей головного мозга. На заре применения ЭЭГ исследователи так и делали, но при этом они обязательно предоставляли в своих отчетах и публикациях координаты расположения электродов. В настоящее время применяется единая стандартная система наложения электродов - система «10-20».

1.3. Магнитоэнцефалография (МЭГ)

Активность мозга всегда представлена синхронной активностью большого количества нервных клеток, сопровождаемой слабыми электрическими токами, которые создают магнитные поля. Регистрация этих полей неконтактным способом позволяет получить так называемую магнитоэнцефалограмму (МЭГ). МЭГ регистрируют с помощью сверхпроводящего квантового интерференционного устройства - магнетометра. Предполагается, что если ЭЭГ больше связана с радиальными по отношению к поверхности коры головного мозга источниками тока (диполями), что имеет место на поверхности извилин, то МЭГ больше связана с тангенциально направленными источниками тока, имеющими место в корковых областях, образующих борозды. Если исходить из того, что площадь коры головного мозга в бороздах и на поверхности извилин приблизительно одинакова, то несомненно, что значимость магнитоэнцефалографии при изучении активности мозга сопоставима с электроэнцефалографией. Электрическое и магнитное поля взаимоперпендикулярны, поэтому при одновременной регистрации обоих полей можно получить взаимодополняющую информацию об исходном источнике генерации тех или иных потенциалов. МЭГ может быть представлена в виде профилей магнитных полей на поверхности черепа либо в виде кривой линии, отражающей частоту и амплитуду изменения магнитного поля в определенной точке скальпа. МЭГ дополняет информацию об активности мозга, получаемую с помощью электроэнцефалографии.

1.4. Позитронно-эмиссионная томография мозга (ПЭТ)

В современных клинических и экспериментальных исследованиях все большее значение приобретают методы, дающие визуальную картину мозга субъекта в виде среза на любом уровне, построенную на основе метаболической активности отображенных на этой картине структур. Одним из наиболее результативных методов в плане пространственного разрешения изображения является позитронно - эмиссионная томография мозга (ПЭТ). Техника ПЭТ заключается в следующем. Субъекту в кровеносное русло вводят изотоп, это кислород-15, азот-13 или фтор-18. Изотопы вводят в виде соединения с другими молекулами. В мозге радиоактивные изотопы излучают позитроны, каждый из которых, пройдя через ткань мозга примерно на 3 мм от локализации изотопа, сталкивается с электроном. Столкновение между материей и антиматерией приводит к уничтожению частиц и появлению пары протонов, которые разлетаются от места столкновения в разные стороны теоретически под углом в 180° друг к другу. Голова субъекта помещена в специальную ПЭТ-камеру, в которую в виде круга вмонтированы кристаллические детекторы протонов. Подобное расположение детекторов позволяет фиксировать момент одновременного попадания двух «разлетевшихся» от места столкновения протонов двумя детекторами, отстоящими друг от друга под углом в 180°.

Наиболее часто применяют лиганд F18 - дезоксиглюкозу (ФДГ). ФДГ является аналогом глюкозы. Области мозга с разной метаболической активностью поглощают ФДГ соответственно с разной интенсивностью, но не утилизируют ее. Концентрация изотопа F18 в нейронах разных областей увеличивается неравномерно, следовательно и потоки «разлетающихся» протонов на одни детекторы попадают чаще, чем на другие. Информация от детекторов поступает на компьютер, который создает плоское изображение (срез) мозга на регистрируемом уровне. Кроме того, два других изотопа применяются в ПЭТ также для определения метаболической активности.

1.5. Окулография

Движения глаз являются важным показателем в психофизиологическом эксперименте. Регистрация движений глаз называется окулографией.

С одной стороны, окулографический показатель необходим для выявления артефактов (явление, процесс, предмет, свойство предмета или процесса, появление которого в наблюдаемых условиях по естественным причинам невозможно или маловероятно) от движений глаз в ЭЭГ, с другой стороны, этот показатель выступает и как самостоятельный предмет исследования, и как составляющая при изучении субъекта в деятельности. Амплитуду движения глаз определяют в угловых градусах. Существует восемь основных видов движений глаз. Три движения - тремор (мелкие, частые колебания амплитудой 20-40 угловых секунд), дрейф (медленное, плавное перемещение глаз, прерываемое микроскачками) и микросаккады (быстрые движения продолжительностью 10-20 мс и амплитудой 2-50 угловых минут) относят к микродвижениям, направленным на сохранение местоположения глаз в орбите.

Из макродвижений, связанных с изменением местоположения глаз в орбите, наибольший интерес в психофизиологическом эксперименте представляют макросаккады и прослеживающие движения глаз. Макросаккады отражают обычно произвольные быстрые и точные смещения взора с одной точки на другую, например, при рассматривании картины, при быстрых точностных движениях руки (рис. 1.2) и т.д. Их амплитуда варьирует в пределах от 40 угловых минут до 60 угловых градусов. Прослеживающие движения глаз - плавные перемещения глаз при отслеживании перемещающегося объекта в поле зрения.

Наиболее распространенным методом регистрации движений глаз является электроокулография. По сравнению с другими окулографическими методами, такими, как фотооптический, фотоэлектрический и электромагнитный, электроокулография исключает контакт с глазным яблоком, может проводиться при любом освещении и тем самым не нарушает естественных условий зрительной активности. В основе электроокулографии лежит дипольное свойство глазного яблока - его роговица имеет положительный заряд относительно сетчатки (корнеоретинальный потенциал). Электрическая и оптическая оси глазного яблока практически совпадают, и поэтому электроокулограмма (ЭОГ) может служить показателем направления взора. При движении глаза угол его электрической оси изменяется, что приводит к изменению потенциалов, наводимых диполем глазного яблока на окружающие ткани. Именно эти потенциалы регистрируются электроокулографическим методом.

Две пары неполяризующихся отводящих электродов с электропроводной пастой накладывают на обезжиренные участки кожи в следующих точках:

а) около височных углов обеих глазных щелей - для регистрации горизонтальной составляющей движений;

б) посередине верхнего и нижнего края глазной впадины одного из глаз- для регистрации вертикальной составляющей движений.

Контактное сопротивление на электродах, как правило, позволяет избегать артефактов от ЭЭГ и мышечной активности. Потенциалы, снимаемые между электродами в каждой паре, усиливаются и поступают на монитор, а затем записываются на магнитные носители магнитофона или ЭВМ.

Линия на ЭОГ при неподвижном взоре, направленном прямо, принимается за нулевую. При повороте глаз вправо на электроде, расположенном на височном углу правого глаза, потенциал становится более положительным по отношению к нулевой линии, а на электроде слева - отрицательным. При повороте глаз влево это соотношение потенциалов на электродах меняется. При направлении взора вверх на электроде, расположенном на верхнем крае глазной впадины, потенциал становится положительным по отношению к нулевой линии, а на электроде нижнего края - отрицательным. Амплитуда движений глаз в данном случае измеряется в милливольтах, но после проведения калибровочных движений глаз, т.е. движений с одной точки на другую с известным расстоянием в угловых градусах, амплитуду можно представить в угловых градусах. Итак, по смещению регистрируемых потенциалов горизонтальной и вертикальной составляющих можно определить направление, а по величине этих смещений- величину углового смещения оптических осей глаз.

Движения глаз, особенно вертикальные, а также моргания вызывают выраженные артефакты в ЭЭГ, поэтому регистрация ЭЭГ без регистрации ЭОГ в психофизиологических экспериментах считается недопустимой ошибкой.

1.6. Электромиография

Электромиография - это регистрация суммарных колебаний потенциалов, возникающих как компонент процесса возбуждения в области нервномышечных соединений и мышечных волокнах при поступлении к ним импульсов от мотонейронов спинного или продолговатого мозга. В настоящее время применяются различные варианты подкожных (игольчатых) и накожных (поверхностных) электродов. Последние в силу их атравматичности и легкости наложения имеют более широкое применение.

Обычно пользуются биполярным отведением, помещая один электрод на участке кожи над серединой («двигательной точкой») мышцы, а второй - на 1-2 см дистальнее (дальше). При монополярном отведении один электрод помещают над «двигательной точкой» исследуемой мышцы, второй- над ее сухожилием или на какой-либо отдаленной точке (на мочке уха, на грудине и т.д.). Требования к электродам и к их наложению такие же, как и при наложении электроэнцефалографических или электроокулографических электродов.

Во время покоя скелетная мускулатура всегда находится в состоянии легкого тонического напряжения, что проявляется на электромиограмме (ЭМГ) в виде низкоамплитудных (5-30 мкВ) колебаний частотой 100 Гц и более. Даже при локальном отведении электроактивности от расслабленной мышцы полное отсутствие колебаний потенциала в отдельной двигательной единице (мышечном волокне) отсутствует; обычно наблюдаются колебания частотой 6-10 Гц. При готовности к движению, мысленному его выполнению, при эмоциональном напряжении и других подобных случаях, т.е. в ситуациях, не сопровождающихся внешне наблюдаемыми движениями, тоническая ЭМГ возрастает как по амплитуде, так и по частоте. Например, чтение «про себя» сопровождается увеличением ЭМГ активности мышц нижней губы, причем чем сложнее или бессмысленнее текст, тем выраженное ЭМГ. При мысленном письме у правшей усиливается мышечная активность поверхностных сгибателей правой руки, выявляемых на ЭМГ.

Произвольное движение сопровождается определенной последовательностью активации различных мышц: амплитуда ЭМГ одних мышц увеличивается до движения, других - в процессе движения (рис. 1.2).

Амплитуда и частота ЭМГ прежде всего определяются количеством возбужденных двигательных единиц, а также степенью синхронизации развивающихся в каждой из них колебаний потенциала. Как было показано в специальных исследованиях, амплитуда ЭМГ нарастает градуально. Это, по-видимому, связано с тем, что сначала активируются обладающие большей возбудимостью двигательные единицы, а затем вместе с ними начинают активироваться и другие двигательные единицы. Общая амплитуда ЭМГ может достигать 1-2 мВ. ЭМГ становится особенно информативной в комплексе с другими показателями (см. рис. 1.2).

1.7. Электрическая активность кожи (ЭАК)

Электрическая активность кожи (ЭАК) связана с активностью потоотделения, однако физиологическая основа ее до конца не изучена. Из центральной нервной системы к потовым железам поступают сигналы из коры больших полушарий и из глубинных структур мозга - гипоталамуса и ретикулярной формации. Именно поэтому существовавшее ранее представление о том, что потоотделение полностью контролируется волокнами симпатической нервной системы, нельзя считать верным: потовая железа - это «орган с неожиданно высокой биологической сложностью». У человека на теле имеется 2-3 млн. потовых желез, причем на ладонях и подошвах их в несколько раз больше, чем на других участках тела. Их главная функция - поддержание постоянной температуры тела - заключается в том, что выделяемый ими пот испаряется с поверхности тела и тем самым охлаждает его. Однако некоторые потовые железы активны не только при повышении температуры тела, но и при сильных эмоциональных переживаниях, стрессе и разных формах активной деятельности субъекта. Эти потовые железы сосредоточены на ладонях и подошвах и в меньшей степени на лбу и подмышками. ЭАК обычно и используется как показатель такого «эмоционального» и «деятельностного» потооделения. Ее обычно регистрируют с кончиков пальцев или с ладони биполярными неполяризующимися электродами.

Существуют два способа исследования электрической активности кожи:

1) метод Фере, в котором используется внешний источник тока;

2) метод Тарханова, в котором внешний источник тока не применяется.

В настоящее время считается, что существуют различия в физиологической основе показателей, измеряемых этими методами. Если раньше эти показатели ЭАК называли общим термином - кожно-гальваническая реакция, то сейчас в случае приложения внешнего тока (метод Фере) показателем считается проводимость кожи (ПрК), а показателем в методе Тарханова является электрический потенциал самой кожи (ПК). Поскольку выделение пота из потовых желез имеет циклический характер, то и записи ЭАК носят колебательный характер (рис. 1.3). Расшифровка этих колебательных процессов прямо связана с механизмами ЭАК и поэтому остается проблематичной.

Существует еще целый набор вегетативных показателей, которые получили широкое применение при изучении функционального состояния человека. К ним можно отнести характеристики сердечного ритма, кровяное давление, изменение тонуса сосудов головы и конечностей, показатели активности желудка и др.

Вопросы для самопроверки

    В чем специфика применения электрических показателей для анализа физиологической активности?

    Охарактеризуйте единую стандартную систему наложения электродов (система «10-20»).

    В чем заключаются особенности электрических и магнитных полей?

    Каково предназначение позитронно-эмиссионной томографии мозга?

    Каким образом происходит регистрация движения глаз?

    Опишите процесс осуществления электромиографии.

    Каковы ведущие способы исследования электрической активности кожи?

Раздел 2. Психофизиологические основы построения профессии

В чем заключается понятие деятельности? Каковы виды и формы деятельности? Каковы структурные элементы трудовой деятельности? В чем заключается сущность профессии и специальности? Каковы основные типы профессий? Что такое профессиография? Каковы психофизиологические основы способностей?

2.1. Деятельность: понятие, структура, виды и формы.

2.1.1. Специфика трудовой деятельности

Деятельность представляет собой активное взаимодействие живого существа с окружающим миром, в ходе которого оно целенаправленно воздействует на объект и за счет этого удовлетворяет свои потребности.

Деятельность - это специфическая человеческая форма активного отношения к окружающему миру, содержание которой составляет его целесообразное изменение и преобразование. В отличие от действий животного, деятельность человека предполагает определённое противопоставление субъекта и объекта деятельности: человек противополагает себе объект деятельности как материал, который сопротивляется воздействию на него человека и должен получить новую форму и свойства, превратиться из материала в продукт деятельности.

Всякая деятельность включает в себя цель, средства ее достижения, действия, направленные на достижение цели, и результат (рис. 2.1). Неотъемлемой характеристикой деятельности является её осознанность.

Рис. 2.1. Структура деятельности

Исследований . ... послужила основой важнейшего раздела экспериментальной фи­зиологии-электрофизиологии. ...

  • «психофизиологические основы интеллектуальной деятельности»

    Учебно-методический комплекс

    Деятельности человека» Цель модуля – изучить методы психофизиологического исследования , основ психофизиологии функциональных состояний и основных... самостоятельной работы студентов соответствуют пройденным разделам дисциплины. Для контроля знаний...

  • ПРЕДМЕТ ЗАДАЧИ И МЕТОДЫ ПСИХОФИЗИОЛОГИИ

    Учебное пособие

    Человека. Дифференциальная психофизиология - раздел , изучающий естественнонаучные основы и... психофизиологического исследования . 2.1. МЕТОДЫ ИЗУЧЕНИЯ РАБОТЫ ГОЛОВНОГО МОЗГА Центральное место в ряду методов психофизиологического исследования ...

  • Понравилась статья? Поделитесь с друзьями!
    Была ли эта статья полезной?
    Да
    Нет
    Спасибо, за Ваш отзыв!
    Что-то пошло не так и Ваш голос не был учтен.
    Спасибо. Ваше сообщение отправлено
    Нашли в тексте ошибку?
    Выделите её, нажмите Ctrl + Enter и мы всё исправим!