Строительный портал - Meerson

Как крепить гибкие солнечные панели. Тонкопленочная технология отвоевывает позиции на рынке солнечной энергетики. Самые интересные достижения в мире тонкопленочных модулей

Бесплатная электрическая энергия, или хотя бы дешёвая – вот мечта чуть ли не каждого человека на нашей планете. Как бы не дешевела нефть, какие запасы газа ни использовались и насколько страны ни гордились своими мощными АЭС, обыкновенному обывателю о дешёвом электричестве остаётся только грезить. Альтернативные источники постепенно начинают отстранять государственные службы от монополии на энергетику.

Уже никого не удивляет ветряк, расположенный в соседнем дворе, крыши домов начинают покрываться панелями солнечных батарей. Как считают учёные, именно на использование солнечных лучей сейчас делается наибольшая ставка. С каждым днём источники солнечной энергии находят всё новое применение. И также быстро они меняют свой вид. Теперь в моде гибкие солнечные батареи, о которых и пойдет речь в нашей статье.

Как работают гибкие батареи на солнечной энергии

Получение энергии от солнечных лучей уже давно знакомо человеку. Но если ещё лет 30 назад такой привилегией могла похвастаться лишь космонавтика, то теперь от Солнца работают многие бытовые предметы. Взять хотя бы обыкновенный калькулятор. Принцип довольно прост. Лучи нагревают полупроводник, чаще всего кремний, и заставляют его электроны двигаться в определённом направлении. Остаётся только припаять проводки к обеим сторонам элемента, собрать несколько штук в батарею и портативная солнечная электростанция готова.

Первые имели низкий , представляли собой громоздкие и тяжёлые конструкции. Сегодня эти изделия намного легче, для выработки электричества не требуется максимальная освещённость. Появление гибких солнечных батарей в корне меняет отношение к этому вечному источнику бесплатной электроэнергии.

Гибкая солнечная батарея

Конструкция гибкой батареи существенно отличается от своего кремниевого прототипа. В основе новых источников используются полимеры, представляющие мягкие панели, которые придают изделиям потрясающую гибкость. Активными элементами являются электроды из алюминия.

Если всю поверхность, заполненную активными элементами, покрыть защитной плёнкой, то солнечная батарея готова (о видах солнечных батарей вы можете узнать из статьи). Хотя, только идут исследования по этому виду альтернативного источника питания, гибкие солнечные батареи уже нашли себе большой простор для применения и отличились рядом достоинств:

  • гибкая основа;
  • лёгкая конструкция;
  • компактность;
  • низкая стоимость производства;
  • не подвержены влиянию окружающей среды;
  • экологичность.

Главным и существенным минусом солнечных батарей на полимерной основе является малый коэффициент полезного действия. Наилучшие варианты, полученные в США, достигли 6,5%. По последним данным, немецким специалистам удалось разработать источники, дающие до 10%. Это, конечно, мало, но всё же…

Большое будущее

После того, как полимерные солнечные батареи были поставлены на поток, они всё чаще появляются в самых разных областях жизнедеятельности человека.

Современные батареи не только легко изгибаются в любом направлении, их можно разделить на части при помощи обыкновенного ножа.
Первые варианты батарей быстро стали применяться в обшивке домов. Из гибких солнечных батарей можно получить конструкцию практически любой формы. Если раньше, для установки панелей требовалась идеально ровная крыша, то сейчас полимер можно изогнуть в любом порядке. Даже получить волну не хуже, чем у шифера.

Электроэнергия – это то, чего так недостаёт путешественнику. Для туризма разработано немало устройств, способных вырабатывать ценные вольты вдали от цивилизации. Гибкая батарея, в свёрнутом виде, не занимает много места в дорожном рюкзаке. Вес совершенно ничтожен. Для приведения в действие нужны секунды. А питания вполне достаточно, чтобы подключить приёмник или зарядить аккумулятор сотового телефона.

Планируется даже пошив одежды из гибких солнечных батарей. Такой фасон очень подойдёт северянам, которые смогут согреваться без толстых неуклюжих шуб.
Одной из самых интересных разработок являются прозрачные гибкие солнечные панели. Эти источники энергии будут использоваться вместо стёкол в домах, что позволит получать максимально эффективную площадь, освещаемую солнцем.

Powerfilm: на шаг впереди

Эта компания является одной из лучших производителей зарядных устройств, работающих от солнечной энергии. Именно в её продукции максимально эффективно используются гибкие солнечные батареи.

Сейчас компания выпускает целый спектр устройств, которые способны возродить к жизни не только обыкновенный фонарик, но и осветить небольшой частный домик или палаточный городок. Но основным назначением на этот момент остаются зарядки для мобильных устройств.

Если раньше таких зарядок хватало на несколько минут телефонного разговора, то сейчас зарядные устройства PowerFilm Solar в состоянии поддерживать работоспособность ноутбука.

Батареи PowerFilm уже способны вырабатывать энергию, мощностью до 3 кВт.

За солнечной энергией стоит большое будущее, смотрите видео об этом:

Гибкая солнечная панель устанавливается на крышу и другие поверхности автомобилей, электромобилей, веломобилей, катеров, яхт и любого другого транспорта. Даёт возможность подзарядки аккумуляторных батарей без затрат топлива или зарядки от сети. Также применяются для выработки электроэнергии на стационарных конструкциях: крышах зданий, козырьках, малых архитектурных формах – везде, где требуется изгиб солнечных панелей и/или малый вес.

– Номинальное напряжение: 5 v -72 v (по заказу)

– Максимальная мощность: 5 w – 170 w (по заказу)

– Стоимость 1 ватта мощности, при заказе 1шт. гибкой панели.: 3 – 3.6 usd

– Размеры: под заказ, в соответствии с таблицей, размещённой ниже

– Максимальная электрическая мощность, получаемая с 1 м2 солнечной панели: 160 w

– Вес 1 м2 солнечной панели: 3 – 4 кг. (в зависимости от толщины)

– толщина солнечной панели 2.5 – 3 мм (возможно изготовление солнечных панелей с толщиной 1.5 мм)

– Материал корпуса солнечной панели: пластик

– Максимальный угол изгиба: 30 градусов на расстоянии 30 см.

– Тип солнечной панели: монокристаллическая

– Максимальный КПД солнечной панели: 18%

– Срок службы солнечной панели: 10 лет (до уменьшения мощности на 20%)

– C пособы крепления панели:

– с помощью двухстороннего скотча;

– с помощью шурупов, или других крепёжных элементов

Гибкие фотоэлектрические панели поставляются под заказ, – для того, чтобы обеспечить:

– требуемое расположение контроллера (с наружной или внутренней стороны панели)

Стандартные размеры солнечных панелей, с указанием их характеристик, представлены в таблице ниже. Если ни один из вариантов размеров не подходит для эффективного использования места, запланированного для их установки, можно рассмотреть вариант изготовления панели по индивидуальным размерам.

Для максимального удобства наших клиентов, контроллеры также изготавливаются с требуемым напряжением на выходе.

Максимальная мощность одной гибкой солнечной панели ограничена 170 ваттами. Если требуется мощность больше, – она набирается из нескольких солнечных панелей.

Срок выполнения заказа по изготовлению гибких солнечных панелей, пожалуйста, уточняйте у менеджера.

Гарантия 2 года.

Преимущество гибких солнечных панелей уже заложено в их названии – это гибкость. Благодаря возможности изгибать солнечные панели по профилю крыши автомобиля, катера, крыла самолёта или козырька над крыльцом дома, открываются огромные возможности преобразования солнечной энергии в электрическую – там, где раньше это было делать затруднительно.

Малый удельный вес на единицу площади, толщина всего 3 мм и высокий КПД 18%, не уступающий обычным монокристаллическим солнечным панелям, делает гибкие солнечные панели от ТМ Volta bikes , произведённые по новейшим технологиям – самым выгодным предложением на рынке по соотношению цена / качество.

Монтаж гибких солнечных панелей – предельно прост: с помощью клея, двухстороннего скотча, а в тех местах, где это возможно, даже с помощью шурупов.

Используйте каждый квадратный метр вашего транспорта или зданий с выгодой для себя, – преобразовывая солнечный свет в бесплатную электроэнергию для движения, бизнеса, комфорта!

Электромобиль своими руками: Гибкая солнечная панель для автомобилей


Nav view search Каталог товаров Гибкая солнечная панель для автомобилей Гибкая солнечная панель устанавливается на крышу и другие

Гибкие солнечные батареи Sphelar

Продолжая тему энергетики, представляю вашему вниманию революционную концепцию сферических солнечных батарей, которые созданы японской компанией Kyosemi. Гибкие солнечные батареи, благодаря особой форме, способны захватывать солнечный свет со всех сторон.

Обычные плоские солнечные батареи легки в проектировании и производстве, но при этом эффективность плоских солнечных элементов зависит от их положения относительно солнца. Тогда как, солнечные батареи Sphelar сферической формы гораздо эффективнее и требуют меньше затрат на производство. Дизайн гибких солнечных батарей Sphelar предусмотрен для использования батарей в мобильных телефонах.

Сферическая форма – это матрица, на которой размещены солнечные элементы размерами около 2 мм. небольшой размер позволяет разместить элементы в различных положениях, а значит солнечный свет будет поглощаться постоянно. Отпадет необходимость подстраиваться под положение солнца. Кроме того, гибкие солнечные батареи Sphelar способны собирать солнечный свет даже в утренние и вечерние часы. Поверхность, на которой размещены солнечные элементы, является гибкой, поэтому при необходимости гибкую солнечную батарею можно сгибать как угодно.

Гибкая солнечная батарея от чикагских конструкторов за 2 дня стала хитом Kickstarter

Чикагская компания YOLK, США, собирает средства на «солнечную бумагу», которая за 2,5 часа полностью заряжает батареи iPhone.

Solar Paper – это очень тонкая солнечная батарея, которая легко помещается между страницами блокнота или тетради. Несмотря на свою тонкость, портативное солнечное зарядное устройство способно генерировать до 10Вт энергии.

В хороший солнечный день Solar Paper заряжает iPhone 6 за 2,5 часа, что равнозначно сетевому зарядному устройству на 5V-2A. Устройство пригодно для зарядки любого гаджета через USB-кабель.

Размеры «листка» составляют 9x19x1,1 см, а вес – 120 гр. Толщина панели равна всего 1,5 мм.

Solar Paper использует модульные панели, соединяемые друг с другом с помощью встроенных магнитов. Всего можно подключить до четырёх панелей мощностью 2,5Вт каждая. Четыре панели обеспечат смартфон до 10Вт энергии через USB-подключение.

Кроме того, Solar Paper запрограммирована на автоматическое возобновление зарядки при обнаружении достаточного количества солнечного света, что очень полезно в облачную погоду.

Солнечная панель оборудована LCD-дисплеем, который отображает ток, подаваемый на подключённое устройство. Это позволяет выбрать оптимальное расположение и угол наклона Solar Paper для зарядки, в зависимости от погодных условий.

Кампания по сбору средств на Kickstarter, по сути, завершилась за 2 дня, когда и были собраны требующиеся для запуска в производство $50 тыс.

На момент написания материала разработчики собрали более $229 тыс. Первая партия солнечных зарядных устройств будет поставлена уже в сентябре 2015 года.

Версия Solar Paper на 5Вт энергии стоит $69, на 10Вт (4 солнечные панели) – $450.

Гибкая солнечная батарея от чикагских конструкторов за 2 дня стала хитом Kickstarter - Blog


Чикагская компания YOLK, США, собирает средства на «солнечную бумагу», которая за 2,5 часа полностью заряжает батареи iPhone.Solar Paper – это очень тонкая солнечная батарея, которая легко помещает…

Гибкие солнечные панели из специфических отраслей (аэрокосмической, энергетической и пр.) все больше продвигаются в бытовую сферу. Они встречаются в рекламных сооружениях, элементах архитектуры, да и мобильные (складные) источники энергии уже никого не удивляют.

Конструктивные особенности панели

Гибкой солнечной панелью называют тонкопленочное изделие, которое состоит из тонкой подложки с напыленным на нее слоем полупроводника. Общая толщина составляет всего 1 мкм (0,001 мм). Однако такие маленькие размеры не мешают гибкой панели иметь высокий КПД: он лишь немного уступает данному параметру кристаллических солнечных элементов.

Структура гибкой панели

Первые гибкие солнечные панели производились только на основе кремния (аморфного). В современных моделях применяют теллуриды и сульфиды кадмия, диселениды (медно-галлиевые и медно-индиевые) и некоторые полимеры.

Повышения КПД панелей производители добиваются за счет многокаскадных полупроводниковых структур. В них солнечный свет отражается многократно, что весьма положительно сказывается на энергоэффективности данной панели.

Данные технологии позволяют получить тонкий, легкий модуль, обладающий высокой прочностью и износостойкостью. Гибкие панели можно складывать, сворачивать в трубочку. Изделия требуют определенной бережности в обращении, однако прекрасно выдерживают походные условия.

Область применения

Наиболее широко тонкопленочные элементы применяются на гелиостанциях. Они прекрасно зарекомендовали в разных климатических зонах (даже в местах, где преобладает пасмурная погода).

Солнечные панели не могли не заинтересовать специалистов космической отрасли. Сейчас в России ведутся работы по созданию тонкопленочных фотопанелей для космических станций. Они лучше переносят радиационное излучение, а их производство обходится дешевле кристаллических аналогов.

Мобильные панели

Применяют солнечные панели службы медицины, МЧС, поисковики и пожарные.

Великим благом новая разработка стала для научных экспедиций: с такими источниками энергии стало возможным создавать нужный температурный режим для хранения различных компонентов, необходимых для проведения лабораторных испытаний в полевых условиях. Освещение, зарядка ноутбука, мобильного телефона – все это можно организовать без труда при помощи. А если учесть, что в продаже имеются достаточно мощные – до 3 кВт – так называемые солнечные навесы, то и работу научно-исследовательского оборудования можно легко обеспечить.

Полюбили портативные солнечные батареи и туристы: и их помощью они могут в походе зарядить фотоаппараты, видеокамеры, мобильные телефоны и GPS-трекеры. Особый интерес у любителей путешествовать вызывает модуль для рюкзака. Он исправно заряжает всю необходимую аппаратуру во время марш-броска.

Смотрим видео, туристическая гибридная модель:

Вышеперечисленные способы применения – это только малая часть обширного списка сфер, в которых данная продукция применяется все чаще. Это и судоходство, и кинематография, военные и полицейские службы и т.д.

Преимущества и недостатки

Им присущ ряд неоспоримых преимуществ:

  • Небольшой вес: это очень важное преимущество для туристов, так как тащить рюкзак им приходится на собственной спине. При длительных переходах даже лишние 100 граммов веса кажутся неподъемными. 6-ваттная пленочная модель весит всего 284 грамма – а это на 106 граммов легче кристаллической солнечной батареи такого же номинала;
  • Надежность: производители гибких панелей предусмотрели особенности их эксплуатации, поэтому предприняли ряд мер, защищающих изделие от механических повреждений, воздействия влаги. Основная масса моделей обеспечена чехлами, способными стойко переносить высокие нагрузки. Небольшой вес панелей позволяет им без особых повреждений переносить падение с высоты. По свидетельству туристов, панель, упавшая на камни с десятиметровой высоты, остается работоспособной.
  • Эффективность: вопрос, что эффективнее – гибкие или твердые модули, непростой. Ведь КПД кристаллических батарей составляют от 18 до 20%, а пленочных – 12-15%. На первый взгляд, гибкие панели проигрывают. Но если пересчитать КПД на единицу веса, однозначно пленочные модули окажутся в выигрыше.

К недостаткам можно отнести следующее:

  • Размер: если сравнить два модуля – гибкий и твердый – одинаковой мощности, то, несомненно, первые проиграют. Площадь пленочной батареи мощностью 6 Вт составляет 1,5 кв. м, а кристаллического – 0,9 кв. м. Хотя проигрыш этот спорный – ведь гибкую панель можно свернуть, и тогда она займет места, по крайней мере, не больше кристаллической;
  • Цена: стоят тонкопленочные модули больше жестких, что вполне естественно – чем изделие удобнее в пользовании, тем оно дороже. Впрочем, здесь играет немаловажную роль и понятие «новинки». Со временем и гибкие модули станут вполне доступными для любого желающего их приобрести (как это случилось, к примеру, с мобильными телефонами).

Покупателю на заметку

На что смотреть при выборе

На рынке солнечных батарей гибкие панели уже представлены довольно широко. Каждая модель имеет свои особенности, и при выборе надо следует учитывать:

  • Обратите внимание на силу тока: для зарядки мобильных устройств в солнечную погоду достаточно 0,5 А;
  • Некоторые модели оснащены присосками для крепления к поверхности. Если вы хотите прикрепить модуль к крыше авто, ищите такой вариант. Для крепления на рюкзак подойдет любая модель, так во всех чехлах предусмотрены для этого небольшие отверстия;
  • Если вам продавец «гарантирует» КПД 25% - уходите: вам пытаются продать продукцию неизвестного происхождения. Последняя модель от известного производителя из Швейцарии имеет коэффициент полезного действия, равный 17,7%. Выше них пока еще никто не «прыгнул».

Гибридная панель

Большой интерес вызывает еще один вид солнечных модулей – гибридные солнечные панели. Они способны одновременно вырабатывать два вида энергии:

  1. Электрическую;
  2. Тепловую.

Гибридная солнечная панель представляет собой симбиоз теплового коллектора и фотоэлектрической панели. Ее краткое название – PVT-панель. Такая комбинация позволяет сократить в два раза установочную площадь при одновременном использовании фотоэлектрических модулей и солнечных коллекторов на одном здании.

Смотрим видео, гибридной модели:

Конструкция гибридной солнечной панели имеет неоспоримое преимущество – возможность отбора избыточного тепла от фотоэлемента за счет теплоносителя, который используется в тепловой части модуля. А ведь именно повышение температуры фотоэлемента приводит к снижению эффективности выработки электрической энергии.

Однако, практика пока не позволяет подтвердить радужные теоретические выводы. Поэтому пока наиболее целесообразно использовать гибридные модули в качестве низкопотенциального источника энергии: например, он может играть роль источника тепла для теплового насоса, накопления тепла скважины в летний период или подогрева воды в бассейне.

Несмотря на ряд недостатков гибких и гибридных солнечных панелей, будущее, несомненно, за ними. По мере усовершенствования и снижения цены, они будут все больше вытеснять кристаллические модели и из промышленной сферы, и из бытовой.

Солнечные батареи хоть и экологически чистые, но при этом - весьма дорогие. Ученые нашли им альтернативу - полимерные солнечные батареи . О том, что это такое, рассказано в статье.

Человек, хотя бы немного интересующийся солнечной энергетикой, прекрасно представляет себе, что такое солнечная батарея - это совокупность большого количества фотоэлементов, укрепленных на какой-либо поверхности.

Фотоэлемент представляет собой полупроводниковое устройство, которое преобразует энергию Солнца в электрический ток. Фотоэлементы «традиционных» солнечных батарей производят из кремния. Процесс производства таких батарей сложен и весьма дорог. Несмотря на то, кремний - это очень распространенный элемент и что в земной коре содержится около 20% кремния, процесс превращения исходного песка в высокочистый кремний очень сложен и дорог.

Кроме того, порой возникают проблемы с утилизацией отработанных фотоэлементов, поскольку в этих фотоэлементах помимо кремния содержится еще и кадмий. И наконец, кремниевые фотоэлементы по мере работы сильно нагреваются. После чего их производительность начинает снижаться. Поэтому кремниевым батареям помимо фотоэлементов требуются еще и дорогостоящие системы охлаждения. Подобнее об этом смотрите здесь: . Все это заставило ученых искать более эффективные .

Полимерный фотоэлемент - это пленка, которая состоит из активного слоя (полимера), электродов из алюминия, гибкой органической подложки и защитного слоя. Для создания рулонных полимерных солнечных батарей отдельные пленочные фотоэлементы объединяют между собой.

Достоинства полимерных солнечных батарей по сравнению с обычными кристаллическими : компактность, легкость, гибкость. Такие батареи недороги в производстве (для их изготовления не используется дорогой кремний) и экологичны, так как они оказывают на окружающую среду менее значительное влияние.

Недостаток пока один - эффективность преобразования солнечной энергии полимерных солнечных батарей пока очень низкий. Этот недостаток и ограничивал создание таких батарей на уровне образцов-прототипов.

В настоящее время, наибольший коэффициент полезного действия полимерных солнечных батарей удалось добиться Алану Хигеру из центра полимеров и органических твёрдых частиц университета Калифорнии в Санта-Барбаре (семь лет назад он получил Нобелевскую премию по химии за открытие и развитие проводящих полимеров) и Кванхе Ли из корейского института науки и технологии в Гванджу.

Их солнечная батарея имеет КПД в 6,5% при освещённости в 0,2 ватта на квадратный сантиметр. Это самый высокий уровень, достигнутых для солнечных батарей из органических материалов. И хотя лучшие кремниевые солнечные батареи имеют КПД 40%, тем не менее к полимерным батареям во всем мире проявляют очень сильный интерес. Правда технология производства таких батарей находится пока еще в ранней стадии своего развития.

Совсем недавно датская компания «Mekoprint A/S» запустила первую линию, на которой будут производится полимерные солнечные батареи. Компания около 10 лет занималась проектно-конструкторскими работами и вот теперь готова к массовому выпуску таких батарей.

Производство заключается в многослойной печати солнечного фотоэлемента на гибкую пленку, которую затем можно скручивать, разрезать и делать из пленки солнечные батареи абсолютно любых размеров.

По заявлениям специалистов компании, основной плюс полимерных батарей - это их дешевизна. Их производство обойдется компании как минимум в 2 раза дешевле, чем производство обычных, кремниевых батарей. Это обстоятельство, в свою очередь, скажется на рыночной стоимости полимерных батарей и в результате они станут намного доступнее.

Вторым плюсом полимерных батарей является их потрясающая гибкость. Такую батарею - можно резать ножом, можно сворачивать в трубку, можно наклеить на любую поверхность совершенно произвольной формы.

При желании такую батарею можно наклеить даже на одежду (что и было однажды проделано датскими специалистами). Полимерная батарея была наклеена на обычную шапку. И в солнечную погоду мощности батареи вполне хватало на то, чтобы от нее работал небольшой переносной радиоприемник.

И наконец, нельзя не упомянуть и о чистоте процесса производства таких батарей. Оказывается. их производство не вреднее, чем производство обычной пластиковой посуды и о вредных выбросах в атмосферу, происходящих при производстве обычных батарей из кремния скоро можно забыть.

Вполне возможно, что через какое-то время мы забудем о газе и угле, так как при дальнейшем развитии этой технологии вполне возможно что вырабатываемая электроэнергия с использованием солнечных полимерных батарей окажется дешевле процесса получения электроэнергии путем сжигания традиционных энергоносителей.

Люди давно задумываются об экологически чистых и дешевых энергетических ресурсах. Поэтому альтернативой энергетики, основанной на применении углеводородов, становятся ветряки и солнечные батареи. Тяжеловесные конструкции со временем трансформировались в изящные панели. Их используют в быту, автомобилестроении, освоении космоса.

Устройство и работа модулей

Гибкая солнечная панель устроена следующим образом: тонкая подложка покрыта кремниевым полупроводником. Толщина панели с напылением составляет не более 1 мкм. Полупроводник нагревается солнцем, в результате чего электроны перемещаются в заданном направлении. К элементам монтируют выводы и формируют батарею. Для работы такой мобильной электростанции используют солнечную энергию.

Крупногабаритные, с маленьким КПД, солнечные батареи ушли в прошлое. Современным моделям не требуется максимальное количество солнечного света, а сами конструкции стали легкими, гибкими, мобильными, их можно свернуть в трубку и взять с собой в поход.

В настоящее время аморфный кремний заменяют сульфиды и теллуриды кадмия, медно-галлиевые и индиевые диселениды, полимерные соединения.

Для повышения КПД современные технологии позволяют выпускать многослойные полупроводниковые конструкции. Каскадное строение панели дает возможность преобразовывать отраженный свет несколько раз, что доводит их работоспособность почти до кристаллических вариантов.

Несмотря на то что устройство выглядит довольно просто, для подачи тока в сеть необходимы дополнительные составляющие:

  • Аккумулятор, накапливающей энергию. Он нужен при перепадах напряжения.
  • Инвертор, переводящий постоянный ток в переменный.
  • Система для корректировки заряда аккумулятора.

Отличительные характеристики

Гибкие гелиомодули имеют свои особенности:

  • Тонкая податливая структура батарей дает возможность использовать их на нестандартных типах поверхности.
  • Имеют высокий уровень оптического поглощения фотонов, это увеличивают их КПД.
  • Гибкие батареи способны работать даже в облачную погоду, что говорит о высокой производительной выработке.
  • Наиболее актуален такой вид энергии в жарком климате, там, где гелиомодули получают максимальное количество солнечных лучей.
  • Особо высокую продуктивность солнечные панели показывают на крупных гелиокомплексах.

Преимущества и недостатки

Гибкая солнечная панель, благодаря своей мобильности, имеет преимущества над другими видами батарей.

К ее достоинствам относится:

  • Надежность изделия обеспечена мерами, предохраняющими от механического разрушения, воздействия влаги. Легкий вес и большая площадь позволяет панели оставаться невредимой при падении с многометровой высоты. Большинство конструкций оснащены чехлами.
  • Ультратонкая панель имеет небольшую массу, 6-ваттная батарея весит менее 300 грамм, тогда как кристаллическая таких же параметров – на 100 г больше.
  • Эффективность работы пленочных моделей составляет 15%, кристаллических – 20%. Но в пересчете КПД на массу тела, солнечная панель имеет преимущества.

К недостаткам можно отнести цену, которая превышает стоимость жесткой батареи. Пока еще не слишком большой спрос удерживает ценовую политику. Постепенно ситуация в этом отношении будет улучшаться.

Применение

Устройства, преобразующие свет в электрический ток, давно нашли свое применение. Гибкие солнечные панели облегчают жизнь людей во многих сферах деятельности, от бытового уровня до космических разработок.

При архитектурной отделке домов гибкие панели монтируют на крышах и в окнах зданий. Стекло «триплекс» с функционалом солнечной генерации собирает энергию света, не нарушая прозрачность окон и создает приятный микроклимат в помещении. В комнатах, где установлены окна с триплексом, можно обходиться без кондиционера.

Подобные стекла устанавливают в учебных заведениях, торговых павильонах, на остановках общественного транспорта, его используют для уличных бассейнов и в теплицах.

Небольшой вес панелей делает их востребованными в самолетостроении, ими оснащают электрические автомобили, лодки, аэростаты. Нашли свое применение гибкие конструкции в военном деле, судостроении, кинематографе, их применяют работники полиции и МЧС.

Панели монтируются на любой поверхности, поэтому их с успехом используют в быту.

Пленочную батарею можно встретить на часах, калькуляторах, в качестве нашивок на одежде, на чехлах. Некоторые модули созданы для ношения на сумках и рюкзаках. Power bank с солнечными фотоэлементами позволяет в экспедициях и походах заряжать телефоны, планшеты, фонарики, фотоаппараты.

Фотопанели на основе аморфного кремния нашли свое применение на космических станциях, с учетом малого веса, их легко доставить на околоземную орбиту, а энергоемкость подобных конструкций в пять раз превышает кристаллические варианты. Удобно использовать солнечные панели на объемных гелиостанциях, где достаточно места для их размещения.

Выбор

Одним из важных критериев выбора являются климатические условия местности, в которой будут установлены гелиопанели. Учитывается количество солнечных дней в году и длина самого дня. Исходя из этих данных, определяется мощность электроэнергии, которую должна вырабатывать батарея в час или сутки. Для северных районов подойдет текстурированное стекло, оно эффективно справляется с работой даже в пасмурные дни. Модули из микроморфного кремния не требуют точной ориентации на солнце, их суммарная годовая мощность превосходит другие тонкопленочные батареи. На них часто останавливают свой выбор жители районов с малой освещенностью.

Выбирая модуль для дома, необходимо продумать, какие электроприборы будут востребованы, хватит ли для них мощности предполагаемой покупки.

Нужно заранее определиться с местом для солнечных панелей и предусмотреть резервную территорию, если понадобится нарастить мощность.

При покупке учитывается тип конструкции, материал, толщина фотоэлемента, производитель модуля – все это влияет на цену, качество и длительность работы. Не обязательно переплачивать за иностранные бренды, хорошо себя зарекомендовали модули российского производства, ориентированные на наши климатические условия.

Для расчета количества модулей, следует учитывать, что семья из 4 человек, в среднем, потребляет 200–300 кВт электроэнергии в месяц. Солнечные панели вырабатывают с одного квадратного метра примерно от 25 Вт до 100 Вт в сутки. Для полного удовлетворения дома в потребностях электричества, понадобится 30–40 секций. Оснащение солнечными батареями обойдется семье около 10 тысяч долларов. Устанавливать панели следует на южную сторону крыши, куда попадает максимальное количество солнечных лучей.

Чтобы определиться с выбором, следует понять, какой тип модуля больше подходит покупателю:

  • Монокристаллические фотоэлементы стоят 1,5 доллара за Вт. Они имеют меньшие размеры и более эффективны, чем другие виды подобных батарей. Их общее покрытие занимает меньше места. Учитывая мощность и качество, лучше сделать выбор в их пользу. Единственным минусом является высокая стоимость.
  • Поликристаллические батареи стоят 1,3 доллар за Вт. По мощности они уступают монокристаллическим, но и оцениваются дешевле. Бюджетные возможности привлекают покупателей, к тому же последние разработки подобных батарей сильно приблизили их КПД к монокристаллическим аналогам.

  • Солнечные тонкопленочные панели имеют меньше мощности на один квадратный метр, чем предыдущие модели. Ситуацию выравнивает появление на рынке модулей из микроморфного кремния. Они вырабатывают хорошую суммарную мощность за годовой отрезок времени, отлично себя зарекомендовали в работе видимого и инфракрасного спектра. Для них не важна привязанность к солнечным лучам. Срок эксплуатации батарей составляет 25 лет. Модули имеют недорогую технологию производства, это сказалось на их стоимости – 1,2 доллара за Вт.
  • Большой интерес представляет собой гибридная панель, так как она генерирует тепловую и электрическую энергию. Конструкция соединяет в себе коллектор тепла и элементы фотоэлектрической батареи.

Понравилась статья? Поделитесь с друзьями!
Была ли эта статья полезной?
Да
Нет
Спасибо, за Ваш отзыв!
Что-то пошло не так и Ваш голос не был учтен.
Спасибо. Ваше сообщение отправлено
Нашли в тексте ошибку?
Выделите её, нажмите Ctrl + Enter и мы всё исправим!