Строительный портал - Meerson

Для чего эффект доплера используется в астрономии. Фундаментальные исследования. Где применяется эффект Доплера

Звук может восприниматься человеком по-разному, если источник звука и слушатель движутся относительно друг друга. Он может казаться более высоким или более низким, чем есть на самом деле.

Если источник звуковых волн и приёмник находятся в движении, то частота звука, которую воспринимает приёмник, отличается от частоты источника звука. При их сближении частота увеличивается, а при удалении уменьшается. Это явление называется эффектом Доплера , по имени учёного, его открывшего.

Эффект Доплера в акустике

Многим из нас приходилось наблюдать, как изменяется тон гудка поезда, двигающегося с большой скоростью. Он зависит от частоты звуковой волны, которую улавливает наше ухо. При приближении поезда эта частота увеличивается, и сигнал становится более высоким. При удалении от наблюдателя частота уменьшается, и мы слышим более низкий звук.

Такой же эффект наблюдается, когда движется приёмник звука, а источник неподвижен, или когда в движении находятся оба.

Почему изменяется частота звуковой волны, объяснил австрийский физик Кристиан Доплер. В 1842 г. он впервые описал эффект изменения частоты, названный эффектом Доплера .

Когда приёмник звука приближается к неподвижному источнику звуковых волн, за единицу времени он встречает на своём пути больше волн, чем если бы он находился в неподвижном состоянии. То есть он воспринимает более высокую частоту и слышит более высокий тон. Когда же он удаляется, число пересечённых в единицу времени волн уменьшается. И звук кажется более низким.

При движении источника звука к приёмнику он словно догоняет волну, созданную им же. Её длина уменьшается, следовательно, увеличивается частота. Если же он удаляется, то длина волны становится больше, а частота меньше.

Как вычислить частоту принимаемой волны

Звуковая волна способна распространяться только в среде. Её длина λ зависит от скорости и направления её движения.

где ω 0 - круговая частота, с которой источник испускает волны;

с - скорость распространения волн в среде;

v - скорость, с которой движется источник волн относительно среды. Её значение положительно, если источник движется навстречу приёмнику, и отрицательно, если он удаляется.

Неподвижный приёмник воспринимает частоту

Если же источник звука неподвижен, а приёмник движется, то частота, которую он будет воспринимать, равна

где u - скорость приёмника относительно среды. Она имеет положительное значение, если приёмник движется навстречу источнику, и отрицательное, если он удаляется.

В общем случае формула частоты, воспринимаемой приёмником, имеет вид:

Эффект Доплера наблюдается для волн любой частоты, а также электромагнитного излучения.

Где применяется эффект Доплера

Эффект Доплера используют везде, где нужно измерить скорость объектов, которые способны излучать или отражать волны. Главное условие для появления этого эффекта - движение источника волн и приёмника относительно друг друга.

Радар Доплера - это прибор, испускающий радиоволну, а затем измеряющий частоту отражённой от движущегося объекта волны. По изменению частоты сигнала он определяет скорость объекта. Такие радары используют сотрудники ГИБДД, чтобы выявить нарушителей, превышающих допустимую скорость. Применяют эффект Доплера в морской и воздушной навигации, в детекторах движения в охранных системах, для измерения скорости ветра и облаков в метеорологии и др.

Мы часто слышим о таком исследовании в кардиологии, как доплеровская эхокардиография. Эффект Доплера используют в этом случае для определения скорости движения клапанов сердца, скорости кровотока.

И даже скорость движения звёзд, галактик и других небесных тел научились определять по смещению спектральных линий с помощью эффекта Доплера.

1

Юшкевич Р.С., Дегтярева Е.Р.

В статье даётся вывод формул к эффекту Доплера без использования закона сложения скоростей, но с использованием принципа постоянства скорости света только относительно источника света. Определена пространственная граница возможности приёма электромагнитных волн. Рассмотрена зависимость скорости света от расстояния. Определен коэффициент для вычисления скорости света.

Для объяснения эффекта допускаем, что свет, идущий от источника света, связан с источником и распространяется от него со скоростью с = 3 · 10 8 м/с относительно источника. Для приемника скорость света относительно источника будет складываться со скоростью источникаv .

Чтобы определить зависимость частоты света ν от скорости v , рассмотрим распространение света от двух источников, один из которых Ѕ движется по направлению от приемника со скоростью v , а другой S 0 покоится.

Рис. 1.

Одинаковые источники излучают свет одинаковой частоты ν 0 . Свет относительно источников распространяется с одинаковой скоростью с , поэтому и длина излучаемой волны λ 0 будет одинакова. К приемнику от движущегося источника свет подойдет со скоростью с- v и длина волны λ 0 будет принята за время Т = (период), а от покоящегося источника - за время Т 0 = . Периоды есть величины обратные частотам колебаний и . Подставим значения Т и Т 0 в полученные равенства

разделив их почленно, получаем

,

получаем [с. 181].

(1)

В случае, когда источник и приемник сближаются, надо знак v заменить на противоположный, получим . Отметим, что с- v и c - это скорости света соответственно относительно приемника и источника света.

Теперь рассмотрим случай, когда источник света движется перпендикулярно направлению на приемник. Учитывая, что свет связан с источником, распространяется относительно его со скоростью с и сносится с ним со скоростью v , чтобы он попал на приемник его надо направить под некоторым углом α так, что sinα = . В этом случае составляющая скорости света, совпадающая с направлением на приемник А будет , составляющая v на это направление равна 0. Чтобы не повторять предыдущие рассуждения, воспользуемся формулой (1), с- v заменим на , а скорость с относительно источника останется неизменной. В результате получаем:

что соответствует результату, полученному в опытах Айвса [с. 181].

Рис. 2.

При переходе света от источника к приемнику меняется его частота от ν 0 до ν. Из формулы с=λν следует, что должна меняться и длина волны. Если от источника света шла волна длиной λ 0 , то приемник получит ее другой, допустим λ . Получить значение λ можно, воспользовавшись тем, что λ и ν величины обратно пропорциональные . Подставив значение ν из формулы (1), получим

Для большей уверенности получим эту формулу другим способом.

Любой приемник света может быть и излучателем, значит, он имеет такую же светонесущую среду, как и источник, и свет в ней распространяется со скоростью с . Свет, переходя из среды источника в среду приемника, получает скорость с относительно приемника.

Волна длиной λ 0 от источника к границе раздела сред источника и приемника подходит со скоростью с - v и границу пройдет за время C самого начала входа волны в сферу среды приемника ее начало приобретает скорость с относительно приеника и за время Т пройдет путь λ = сТ. Подставив значение Т , получаем:

Рис. 3.

В первой половине ХХ в. американский ученый Хаббл в спектрах далеких звезд обнаружил смещение спектральных линий в сторону красной части спектра по сравнению с лабораторными спектрами - «красное смещение». Это означало, что длина принимаемой волны λ больше, чем λ 0 и чем дальше звезда, тем больше «красное смещение».

В формулу (2) входят четыре величины λ, λ 0 , с и v . Кo времени открытия «красного смещения» скорость света с постулатом Эйнштейна была закреплена постоянной относительно любой системы отсчета, значит, и λ 0 , связанная со скоростью света с и источником излучения, оказалась постоянной. В формуле (2) переменная величина λ , оказалась связанной со скоростью источникаv . Увеличение λ вызывает и увеличение v .

«Красное смещение» наблюдается у звезд, расположенным по всем направлениям, поэтому был признан факт расширения Вселенной.

В астрономии связь между λ и v определяется другой формулой

(3)

для удаляющегося источника излучения.

Для одного и того же явления и одних и тех же величин двумя формулами устанавливается разная зависимость! Чтобы разобраться с этим, сравним результаты, которые дают эти формулы при различных v . Ограничений на значение скорости v формулы не требуют. Для удобства длины волн обозначим λ 3 и λ 2 соответственно обозначению формул (3) и (2 ), в которые они входят. При v =0 :

При 0< v < с сравним делением:

Если v «с , то и λ 3 ≈ λ 2 . При этих двух условиях результаты практически не противоречат друг другу.

При v = с; λ 2 превращается в бесконечность, при этом формула (1) дает . Получается, что световая волна от источника к приемнику не попадает, она со скоростью с от источника будет двигаться к приемнику и вместе с источником будет с такой же скоростью уходить от него с - с = 0 .

Третье сравнение требует сделать вывод, какая же формула правильно отражает действительность. Происхождение формулы (2) рассмотрено в начале статьи. Теперь рассмотрим, как получается формула (3).

Рис. 4.

Представим, что источник света окружен средой, в которой свет распространяется к приемнику со скоростью с . Источник света в точке А начал излучать волну. Время излучения одной волны обозначим Т (период). С момента появления начала волны оно начинает перемещаться к приемнику в окружающей среде со скоростью с и за время Т удалится от точки А на расстояние сТ . Но за это же время источник, двигаясь от приемника окажется в точке С , пройдя расстояние АС = v Т , где и окажется конец волны. Расстояние от С до В и будет длиной волны λ = сТ + v Т = (с + v

Если источник не движется, то v = 0 и длина волны будет λ 0 = сТ. Разделив λ на λ 0 , получим:

В начале статьи мы рассмотрели среду, которая обеспечивает скорость света с, она либо связана с источником, либо с приемником света. Первая - дает формулы (1) и (2). Вероятность того, что вторая, от далеко расположенного приемника света, на скорость света больше влияла, чем среда источника света, ничтожно мала. Остается среда, не связанная ни с источником ни с приемником света, которая действует подобно воздуху (веществу) на распространение звука. Но отрицательный результат опытов Майкельсона по обнаружению «эфирного ветра» доказал, что такой среды в природе нет. Остается сделать предпочтение формуле (2). Ранее отмечалось, что при удалении источника света со скоростью v = с волна не достигнет приемника, и сигнал не будет получен.

Хабл ввел закон, носящий его имя [с. 120]

v = НD ,

где v - скорость удаления источника света, D - расстояние между источником и приемником, Н - коэффициент пропорциональности, называемой постоянной Хабла.

.

1 Мпк = 10 6 пк; 1пк (парсек) = 3,26 светового года = 3 . 10 13 км.

Найдем расстояние, при котором v = с: ;

D - это радиус сферы, ограничивающей прием прямого электромагнитного излучения из просторов Вселенной. Из прилегающих к этой сфере зон во внутренней ее части электромагнитные излучения могут приходить только в виде радиоволн. В природе не наблюдается какого-либо приоритетного направления в распределения звезд, поэтому радиоизлучение должно приходить со всех сторон равномерно.

Рассмотрим вариант, когда v >с. В этом случае формулы (1) и (2) дают: и .

Это означает, что волна должна приходить с направления, противоположного тому, где находиться излучатель.

При v = 2с имеем

.

Волна придет без «красного смещения». Определенная в статье граница возможного приема электромагнитного излучения будет верной, если верен закон Хаббла и «красное смещение» вызвано исключительно удалением излучателя. Если же обнаружатся другие факторы, уменьшающие скорость света относительно приемника (а они могут быть), то граница приема волн может быть приближена.

Обратимся теперь к формулам (1) и (2). В них c-v есть скорость света относительно приёмника, обозначим её с 1 =с-v откуда v=c-c 1 .В формулах v представляет разность скоростей света независимо от природы её возникновения. Принято считать, что это результат удаления источника света. Но эта разность скоростей может возникнуть и за счет уменьшения скорости света с увеличением расстояния. Свет это поток квантов энергии и, возможно, что скорость их может уменьшаться.

Предположим, что скорость света с увеличением расстояния от источника света уменьшается, образно говоря «свет стареет».

Известно, что скорость света уменьшается при переходе из оптически менее плотной среды в более плотную. Вызвано это тем, что, что меняются условия для прохождения света. Уменьшение скорости характеризуется показателем преломления n; , где с - скорость света в вакууме а с 1 - скорость в другой среде.

Если по предположению, скорость света уменьшается с увеличением расстояния от источника света, то, значит, меняются и условия его прохождения, что также можно характеризовать показателем преломления n. Получаем, что уменьшенная скорость света будет .

В статье «Опыт Физо» (ж. «Современные наукоёмкие технологии» №2, 2007г.) для определения скорости света в движущейся среде показатель преломления n был использован в виде , где часть показателя, определяемая излучающим атомом, а определяется условиями прохождения света в среде.

Применим такое представление показателя преломления и для вакуума. Если мы приняли предположение, что в вакууме скорость света уменьшается, а вакуум является однородной средой, то уменьшение скорости света должно зависеть только от расстояния и пропорционально ему. Поэтому можно записать ,где D -расстояние до источника света, μ - коэффициент пропорциональности постоянная величина. Скорость принимаемого света будет

Разность между начальной и уменьшенной скоростями света будет

Здесь выражена зависимость между уменьшением скорости света и расстоянием D . Связь между этими же величинами выражает и закон Хабла где v - скорость удаления звезды, что для приёмника света есть разность с-с 1 .

Сравним значения v , которые дают эти два уравнения для предельных значений расстояния D.

Если , то из первого уравнения получаем: , n =1 (для малых расстояний) и . Из закона Хаббла также получаем .

Если это совпадение не случайно, можно предположить, что кванты световой энергии связаны с излучателем, на это же указывает и связь светонесущей среды с источником света.

Чтобы определить скорость с 1 , надо решить относительно n уравнение:

и через n найти скорость с 1 .

Для малых значений D можно использовать закон Хаббла.

В статье имеется явное противоречие. Основываясь на понятии о расширении Вселенной, получен вывод о существовании границы возможного приема электромагнитных волн, а, основываясь на естественном уменьшении скорости света, такая граница отсутствует. Получается, что обнаружение такой границы будет являться доказательством расширения Вселенной.

В статье также без убедительных оснований принято предположение о зависимости скорости света от расстояний. Основания для этого предположения будут обнаружены при рассмотрении процесса излучения квантов света атомом.

СПИСОК ЛИТЕРАТУРЫ:

  1. Зисман Г.А., Тодес О.М., Курс общей физики т.3. - М.: «Наука», 1972г.
  2. Воронцов - Вельяминов Б.А. Астрономия 10. - М.: «Просвещение», 1983г.

Библиографическая ссылка

Юшкевич Р.С., Дегтярева Е.Р. ЭФФЕКТ ДОПЛЕРА И СКОРОСТЬ СВЕТА // Фундаментальные исследования. – 2008. – № 3. – С. 17-24;
URL: http://fundamental-research.ru/ru/article/view?id=2764 (дата обращения: 09.09.2019). Предлагаем вашему вниманию журналы, издающиеся в издательстве «Академия Естествознания»

Эффектом Доплера называют изменение длины и частоты регистрируемых приемником волн, которое вызывает движение их источника либо самого приемника. Данное название эффект получил в честь Кристиана Доплера, который открыл его. Доказать гипотезу экспериментальным методом позднее удалось голландскому ученому Кристиану Баллоту, посадившему в открытый железнодорожный вагон духовой оркестр и собравшему на платформе группу из самых одаренных музыкантов. Когда вагон с оркестром проезжал рядом с платформой, музыканты тянули какую-либо ноту, а слушатели записывали на бумаге то, что им слышалось. Как и ожидалось, восприятие высоты звука напрямую зависело от , как и гласил закон Доплера.

Действие эффекта Доплера

Объясняется данное явление довольно просто. На слышимый тон звука влияет частота звуковой волны, которая доходит до уха. При движении источника звука навстречу человеку каждая последующая волна приходит все быстрее. Ухо воспринимает волны как более частые, из-за чего звук кажется более высоким. Но в процессе удаления источника звука последующие волны испускаются чуть дальше и доходят до уха позднее предыдущих, из-за чего звук ощущается ниже.

Такое явление происходит не только во время движения источника звука, но и человека. «Набегая» на волну, человек пересекает ее гребни чаще, воспринимая звук как более высокий, а уходя от волны – наоборот. Таким образом, эффект Доплера не зависит ни от движется источника звука, ни его приемника по отдельности. Соответствующее звуковое восприятие возникает в процессе их движения относительно друг друга, причем данный эффект характерен не только для звуковых волн, но и световых, а также радиоактивного излучения.

Применение эффекта Доплера

Эффект Доплера не перестает играть чрезвычайно важную роль в самых разных областях науки и жизнедеятельности человека. С помощью него астрономам удалось выяснить, что вселенная постоянно расширяется, а звезды «убегают» друг от друга. Также эффект Доплера позволяет определять параметры движения космических аппаратов и планет. Он же составляет основу действия радаров, которые используют сотрудники ГИБДД для автомобиля. Этим же эффектом пользуются медицинские специалисты, которые при помощи ультразвукового прибора отличают вены от артерий во время проведения инъекций.

Источник волн перемещается налево. Тогда слева частота волн становится выше (больше), а справа - ниже (меньше), другими словами, если источник волн догоняет испускаемые им волны, то длина волны уменьшается. Если удаляется - длина волны увеличивается.

Эффе́кт До́плера - изменение частоты и длины волн , регистрируемых приёмником, вызванное движением их источника и/или движением приёмника.

Сущность явления

Эффект Доплера легко наблюдать на практике, когда мимо наблюдателя проезжает машина с включённой сиреной. Предположим, сирена выдаёт какой-то определённый тон, и он не меняется. Когда машина не движется относительно наблюдателя, тогда он слышит именно тот тон, который издаёт сирена. Но если машина будет приближаться к наблюдателю, то частота звуковых волн увеличится (а длина уменьшится), и наблюдатель услышит более высокий тон, чем на самом деле издаёт сирена. В тот момент, когда машина будет проезжать мимо наблюдателя, он услышит тот самый тон, который на самом деле издаёт сирена. А когда машина проедет дальше и будет уже отдаляться, а не приближаться, то наблюдатель услышит более низкий тон, вследствие меньшей частоты (и, соответственно, большей длины) звуковых волн.

Также важен случай, когда в среде движется заряженная частица с релятивистской скоростью . В этом случае в лабораторной системе регистрируется черенковское излучение , имеющее непосредственное отношение к эффекту Доплера.

Математическое описание

Если источник волн движется относительно среды, то расстояние между гребнями волн (длина волны) зависит от скорости и направления движения. Если источник движется по направлению к приёмнику, то есть догоняет испускаемую им волну, то длина волны уменьшается, если удаляется - длина волны увеличивается:

,

где - частота, с которой источник испускает волны, - скорость распространения волн в среде, - скорость источника волн относительно среды (положительная, если источник приближается к приёмнику и отрицательная, если удаляется).

Частота, регистрируемая неподвижным приёмником

где - скорость приёмника относительно среды (положительная, если он движется по направлению к источнику).

Подставив вместо в формуле (2) значение частоты из формулы (1), получим формулу для общего случая:

где - скорость света , - скорость источника относительно приёмника (наблюдателя), - угол между направлением на источник и вектором скорости в системе отсчёта приёмника. Если источник радиально удаляется от наблюдателя, то , если приближается - .

Релятивистский эффект Доплера обусловлен двумя причинами:

  • классический аналог изменения частоты при относительном движении источника и приёмника;

Последний фактор приводит к поперечному эффекту Доплера, когда угол между волновым вектором и скоростью источника равен . В этом случае изменение частоты является чисто релятивистским эффектом, не имеющим классического аналога.

Как наблюдать эффект Доплера

Поскольку явление характерно для любых волн и потоков частиц, то его очень легко наблюдать для звука. Частота звуковых колебаний воспринимается на слух как высота звука . Надо дождаться ситуации, когда быстро движущийся автомобиль или поезд будет проезжать мимо вас, издавая звук, например, сирену или просто звуковой сигнал. Вы услышите, что когда автомобиль будет приближаться к вам, высота звука будет выше, потом, когда автомобиль поравняется с вами, резко понизится и далее, при удалении, автомобиль будет сигналить на более низкой ноте .

Применение

  • Доплеровский радар - радар , который измеряет изменение частоты сигнала, отражённого от объекта. По изменению частоты вычисляется радиальная составляющая скорости объекта (проекция скорости на прямую, проходящую через объект и радар). Доплеровские радары могут применяться в самых разных областях: для определения скорости летательных аппаратов, кораблей, автомобилей, гидрометеоров (например, облаков), морских и речных течений , а также других объектов.
  • Астрономия
    • По смещению линий спектра определяют лучевую скорость движения звёзд , галактик и других небесных тел. С помощью эффекта Доплера по спектру небесных тел определяется их лучевая скорость . Изменение длин волн световых колебаний приводит к тому, что все спектральные линии в спектре источника смещаются в сторону длинных волн, если лучевая скорость его направлена от наблюдателя (красное смещение), и в сторону коротких, если направление лучевой скорости - к наблюдателю (фиолетовое смещение). Если скорость источника мала по сравнению со скоростью света (300 000 км/с), то лучевая скорость равна скорости света, умноженной на изменение длины волны любой спектральной линии и делённой на длину волны этой же линии в неподвижном источнике.
    • По увеличению ширины линий спектра определяют температуру звёзд
  • Неинвазивное измерение скорости потока. С помощью эффекта Доплера измеряют скорость потока жидкостей и газов. Преимущество этого метода заключается в том, что не требуется помещать датчики непосредственно в поток. Скорость определяется по рассеянию ультразвука на неоднородностях среды (частицах взвеси , каплях жидкости, не смешивающихся с основным потоком, пузырьках газа).
  • Охранные сигнализации. Для обнаружения движущихся объектов
  • Определение координат. В спутниковой системе Коспас-Сарсат координаты аварийного передатчика на земле определяются спутником по принятому от него радиосигналу, используя эффект Доплера.

Искусство и культура

  • В 6-ой серии 1-го сезона американского комедийного телесериала «The Big Bang Theory » доктор Шелдон Купер идёт на Хэллоуин , для которого надел костюм, символизирующий эффект Доплера. Однако все присутствующие (кроме друзей) думают, что он - зебра .

Примечания

См. также

Ссылки

  • Применение эффекта Доплера для измерения течений в океане

Wikimedia Foundation . 2010 .

  • Воск
  • Полиморфизм компьютерных вирусов

Смотреть что такое "Эффект Доплера" в других словарях:

    эффект Доплера - доплеровский эффект Изменение частоты, возникающее при перемещении передатчика относительно приемника или наоборот. [Л.М. Невдяев. Телекоммуникационные технологии. Англо русский толковый словарь справочник. Под редакцией Ю.М. Горностаева. Москва … Справочник технического переводчика

    эффект Доплера - Doplerio reiškinys statusas T sritis fizika atitikmenys: angl. Doppler effect vok. Doppler Effekt, m rus. эффект Доплера, m; явление Доплера, n pranc. effet Doppler, m … Fizikos terminų žodynas

    эффект Доплера - Doppler io efektas statusas T sritis automatika atitikmenys: angl. Doppler effect vok. Doppler Effekt, m rus. доплеровский эффект, m; эффект Доплера, m pranc. effet Doppler, m ryšiai: sinonimas – Doplerio efektas … Automatikos terminų žodynas

    эффект Доплера - Doplerio efektas statusas T sritis Energetika apibrėžtis Spinduliuotės stebimo bangos ilgio pasikeitimas, šaltiniui judant stebėtojo atžvilgiu. atitikmenys: angl. Doppler effect vok. Dopplereffekt, m rus. доплеровский эффект, m; эффект Доплера, m … Aiškinamasis šiluminės ir branduolinės technikos terminų žodynas

    эффект Доплера - Doplerio efektas statusas T sritis Standartizacija ir metrologija apibrėžtis Matuojamosios spinduliuotės dažnio pokytis, atsirandantis dėl reliatyviojo judesio tarp pirminio ar antrinio šaltinio ir stebėtojo. atitikmenys: angl. Doppler effect vok … Penkiakalbis aiškinamasis metrologijos terminų žodynas

Воспринимаемая частота волны зависит от относительной скорости ее источника.

Вам, наверняка, хоть раз в жизни доводилось стоять у дороги, по которой проносится машина со спецсигналом и включенной сиреной. Пока вой сирены приближается, его тон выше, затем, когда машина поравняется с вами, он понижается, и, наконец, когда машина начинает удаляться, он понижается еще, и получается знакомое: ййййииииээээЭААААОоооуууумммм — такой примерно звукоряд. Сами того, возможно, не сознавая, вы при этом наблюдаете фундаментальнейшее (и полезнейшее) свойство волн.

Волны — вообще вещь странная. Представьте себе пустую бутылку, болтающуюся неподалеку от берега. Она гуляет вверх-вниз, к берегу не приближаясь, в то время как вода, казалось бы, волнами набегает на берег. Но нет — вода (и бутылка в ней) — остаются на месте, колеблясь лишь в плоскости, перпендикулярной поверхности водоема. Иными словами, движение среды, в которой распространяются волны, не соответствует движению самих волн. По крайней мере, футбольные болельщики хорошо это усвоили и научились использовать на практике: пуская «волну» по стадиону, они сами никуда не бегут, просто встают и садятся в свой черед, а «волна» (в Великобритании это явление принято называть «мексиканской волной») бежит вокруг трибун.

Волны принято описывать их частотой (число волновых пиков в секунду в точке наблюдения) или длиной (расстояние между двумя соседними гребнями или впадинами). Эти две характеристики связаны между собой через скорость распространения волны в среде, поэтому, зная скорость распространения волны и одну из главных волновых характеристик, можно легко рассчитать другую.

Как только волна пошла, скорость ее распространения определяется только свойствами среды, в которой она распространяется, — источник же волны никакой роли больше не играет. По поверхности воды, например, волны, возбудившись, далее распространяются лишь в силу взаимодействия сил давления, поверхностного натяжения и гравитации. Акустические же волны распространяются в воздухе (и иных звукопроводящих средах) в силу направленной передачи перепада давлений. И ни один из механизмов распространения волн не зависит от источника волны. Отсюда и эффект Доплера.

Давайте еще раз задумаемся над примером с воющей сиреной. Предположим для начала, что спецмашина стоит. Звук от сирены доходит до нас потому, что упругая мембрана внутри нее периодически воздействует на воздух, создавая в нем сжатия — области повышенного давления, — чередующиеся с разрежениями. Пики сжатия — «гребни» акустической волны — распространяются в среде (воздухе), пока не достигнут наших ушей и не воздействуют на барабанные перепонки, от которых поступит сигнал в наш головной мозг (именно так устроен слух). Частоту воспринимаемых нами звуковых колебаний мы по традиции называем тоном или высотой звука: например, частота колебаний 440 герц в секунду соответствует ноте «ля» первой октавы. Так вот, пока спецмашина стоит, мы так и будем слышать неизмененный тон ее сигнала.

Но как только спецмашина тронется с места в вашу сторону, добавится новый эффект. За время с момента испускания одного пика волны до следующего машина проедет некоторое расстояние по направлению к вам. Из-за этого источник каждого следующего пика волны будет ближе. В результате волны будут достигать ваших ушей чаще, чем это было, пока машина стояла неподвижно, и высота звука, который вы воспринимаете, увеличится. И, наоборот, если спецмашина тронется в обратном направлении, пики акустических волн будут достигать ваших ушей реже, и воспринимаемая частота звука понизится. Вот и объяснение тому, почему при проезде машины со спецсигналами мимо вас тон сирены понижается.

Мы рассмотрели эффект Доплера применительно к звуковым волнам, но он в равной мере относится и к любым другим. Если источник видимого света приближается к нам, длина видимой нами волны укорачивается, и мы наблюдаем так называемое фиолетовое смещение (из всех видимых цветов гаммы светового спектра фиолетовому соответствуют самые короткие длины волн). Если же источник удаляется, происходит кажущееся смещение в сторону красной части спектра (удлинение волн).

Этот эффект назван в честь Кристиана Иоганна Доплера, впервые предсказавшего его теоретически. Эффект Доплера меня на всю жизнь заинтересовал благодаря тому, как именно он был впервые проверен экспериментально. Голландский ученый Кристиан Баллот (Christian Buys Ballot, 1817-1870) посадил духовой оркестр в открытый железнодорожный вагон, а на платформе собрал группу музыкантов с абсолютным слухом. (Идеальным слухом называется умение, выслушав ноту, точно назвать её.). Всякий раз, когда состав с музыкальным вагоном проезжал мимо платформы, духовой оркестр тянул какую-либо ноту, а наблюдатели (слушатели) записывали слышащуюся им нотную партитуру. Как и ожидалось, кажущаяся высота звука оказалась в прямой зависимости от скорости поезда, что, собственно, и предсказывалось законом Доплера.

Эффект Доплера находит широкое применение и в науке, и в быту. Во всем мире он используется в полицейских радарах, позволяющих отлавливать и штрафовать нарушителей правил дорожного движения, превышающих скорость. Пистолет-радар излучает радиоволновой сигнал (обычно в диапазоне УКВ или СВЧ), который отражается от металлического кузова вашей машины. Обратно на радар сигнал поступает уже с доплеровским смещением частоты, величина которого зависит от скорости машины. Сопоставляя частоты исходящего и входящего сигнала, прибор автоматически вычисляет скорость вашей машины и выводит ее на экран.

Несколько более эзотерическое применение эффект Доплера нашел в астрофизике: в частности, Эдвин Хаббл, впервые измеряя расстояния до ближайших галактик на новейшем телескопе, одновременно обнаружил в спектре их атомного излучения красное доплеровское смещение, из чего был сделан вывод, что галактики удаляются от нас (см. Закон Хаббла). По сути, это был столь же однозначный вывод, как если бы вы, закрыв глаза, вдруг услышали, что тон звука двигателя машины знакомой вам модели оказался ниже, чем нужно, и сделали вывод, что машина от вас удаляется. Когда же Хаббл обнаружил к тому же, что чем дальше галактика, тем сильнее красное смещение (и тем быстрее она от нас улетает), оно понял, что Вселенная расширяется. Это стало первым шагом на пути к теории Большого взрыва — а это вещь куда более серьезная, чем поезд с духовым оркестром.

Christian Johann Doppler, 1803-53

Австрийский физик. Родился в Зальцбурге в семье каменщика. Окончил Политехнический институт в Вене, остался в нем на младших преподавательских должностях до 1835 года, когда получил предложение возглавить кафедру математики Пражского университета, что в последний момент заставило его отказаться от назревшего решения эмигрировать в Америку, отчаявшись добиться признания в академических кругах на родине. Закончил свою карьеру в должности профессора Венского королевского имперского университета.

Понравилась статья? Поделитесь с друзьями!
Была ли эта статья полезной?
Да
Нет
Спасибо, за Ваш отзыв!
Что-то пошло не так и Ваш голос не был учтен.
Спасибо. Ваше сообщение отправлено
Нашли в тексте ошибку?
Выделите её, нажмите Ctrl + Enter и мы всё исправим!